Mostrar el registro sencillo del ítem

dc.contributor.authorSu, Yu-Sheng
dc.contributor.authorHu, Yu-Cheng
dc.contributor.authorWu, Yun-Chin
dc.contributor.authorLo, Ching-Teng
dc.date2024-04
dc.date.accessioned2024-05-13T16:01:02Z
dc.date.available2024-05-13T16:01:02Z
dc.identifier.citationY. S. Su, Y. C. Hu, Y. C. Wu, C. T. Lo. Evaluating the Impact of Pumping on Groundwater Level Prediction in the Chuoshui River Alluvial Fan Using Artificial Intelligence Techniques, International Journal of Interactive Multimedia and Artificial Intelligence, (2024), http://dx.doi. org/10.9781/ijimai.2024.04.002es_ES
dc.identifier.urihttps://reunir.unir.net/handle/123456789/16569
dc.description.abstractOver the past decade, excessive groundwater extraction has been the leading cause of land subsidence in Taiwan's Chuoshui River Alluvial Fan (CRAF) area. To effectively manage and monitor groundwater resources, assessing the effects of varying seasonal groundwater extraction on groundwater levels is necessary. This study focuses on the CRAF in Taiwan. We applied three artificial intelligence techniques for three predictive models: multiple linear regression (MLR), support vector regression (SVR), and Long Short-Term Memory Networks (LSTM). Each prediction model evaluated the extraction rate, considering temporal and spatial correlations. The study aimed to predict groundwater level variations by comparing the results of different models. This study used groundwater level and extraction data from the CRAF area in Taiwan. The dataset we constructed was the input variable for predicting groundwater level variations. The experimental results show that the LSTM method is the most suitable and stable deep learning model for predicting groundwater level variations in the CRAF, Taiwan, followed by the SVR method and finally the MLR method. Additionally, when considering different distances and depths of pumping data at groundwater level monitoring stations, it was found that the Guosheng and Hexing groundwater level monitoring stations are best predicted using pumping data within a distance of 20 kilometers and a depth of 20 meters.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;In Press
dc.rightsopenAccesses_ES
dc.subjectartificial intelligencees_ES
dc.subjectchuoshui river alluvial fanes_ES
dc.subjectgroundwater level predictiones_ES
dc.subjectwater pumpinges_ES
dc.titleEvaluating the Impact of Pumping on Groundwater Level Prediction in the Chuoshui River Alluvial Fan Using Artificial Intelligence Techniqueses_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttp://dx.doi. org/10.9781/ijimai.2024.04.002


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem