• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • In Press
    • In Press
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • In Press
    • In Press
    • Ver ítem

    An Adaptive Salp-Stochastic-Gradient-Descent- Based Convolutional LSTM With MapReduce Framework for the Prediction of Rainfall

    Autor: 
    Manoj, S. O.
    ;
    Kumar, Abhishek
    ;
    Dubey, A. K.
    ;
    Ananth, J. P.
    Fecha: 
    01/2024
    Palabra clave: 
    ConLSTM; MapReduce; Mean Square Error (MSE); Mean Square Difference (PRD); S-SGD; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence
    Citación: 
    S. O. Manoj, A. Kumar, A. K. Dubey, J. P Ananth. An Adaptive Salp-Stochastic-Gradient-Descent-Based Convolutional LSTM With MapReduce Framework for the Prediction of Rainfall, International Journal of Interactive Multimedia and Artificial Intelligence, (2024), http://dx.doi.org/10.9781/ijimai.2024.01.003
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/16004
    DOI: 
    https://doi.org/10.9781/ijimai.2024.01.003
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3406
    Open Access
    Resumen:
    Rainfall prediction is considered to be an esteemed research area that impacts the day-to-day life of Indians. The predominant income source of most of the Indian population is agriculture. It helps the farmers to make the appropriate decisions pertaining to cultivation and irrigation. The primary objective of this investigation is to develop a technique for rainfall prediction utilising the MapReduce framework and the convolutional long short-term memory (ConvLSTM) method to circumvent the limitations of higher computational requirements and the inability to process a large number of data points. In this work, an adaptive salp-stochastic-gradientdescent-based ConvLSTM (adaptive S-SGD-based ConvLSTM) system has been developed to predict rainfall accurately to process the long time series data and to eliminate the vanishing problems. To optimize the hyperparameter of the convLSTM model, the S-SGD methodology proposed combine the SGD and the salp swarm algorithm (SSA). The adaptive S-SGD based ConvLSTM has been developed by integrating the adaptive concept in S-SGD. It tunes the weights of ConvLSTM optimally to achieve better prediction accuracy. Assessment measures, such as the percentage root mean square difference (PRD) and mean square error (MSE), were employed to compare the suggested method with previous approaches. The developed system demonstrates high prediction accuracy, achieving minimal values for MSE (0.0042) and PRD (0.8450).
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ip2024_01_003_0.pdf
    Tamaño: 2.586Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • In Press

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    240
    242
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    223
    88

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Comparative study on ant colony optimization (ACO) and K-Means clustering approaches for jobs scheduling and energy optimization model in Internet of Things (IoT) 

      Kumar, Sumit; Kumar-Solanki, Vijender; Kumar Choudhary, Saket; Selamat, Ali; González-Crespo, Rubén (International Journal of Interactive Multimedia and Artificial Intelligence, 03/2020)
      The concept of Internet of Things (IoT) was proposed by Professor Kevin Ashton of the Massachusetts Institute of Technology (MIT) in 1999. IoT is an environment that people understand in many different ways depending on ...
    • Human Activity Recognition in Real-Times Environments using Skeleton Joints 

      Kumar, Ajay; Kumar, Anil; Kumar Singh, Satish; Kala, Rahul (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 2016)
      In this research work, we proposed a most effective noble approach for Human activity recognition in real-time environments. We recognize several distinct dynamic human activity actions using kinect. A 3D skeleton data ...
    • Comparative Study on Ant Colony Optimization (ACO) and K-Means Clustering Approaches for Jobs Scheduling and Energy Optimization Model in Internet of Things (IoT) 

      Kumar, Sumit; Kumar-Solanki, Vijender; Kumar Choudhary, Saket; Selamat, Ali; González-Crespo, Rubén (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2020)
      The concept of Internet of Things (IoT) was proposed by Professor Kevin Ashton of the Massachusetts Institute of Technology (MIT) in 1999. IoT is an environment that people understand in many different ways depending on ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja