• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • In Press
    • In Press
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • In Press
    • In Press
    • Ver ítem

    A Review of Bias and Fairness in Artificial Intelligence

    Autor: 
    González-Sendino, Rubén
    ;
    Serrano, Emilio
    ;
    Bajo, Javier
    ;
    Novais, Paulo
    Fecha: 
    11/2023
    Palabra clave: 
    bias; fairness; responsible artificial intelligence; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence
    Citación: 
    R. González-Sendino, E. Serrano, J. Bajo, P. Novais. A Review of Bias and Fairness in Artificial Intelligence, International Journal of Interactive Multimedia and Artificial Intelligence, (2023), http://dx.doi.org/10.9781/ijimai.2023.11.001
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/15693
    DOI: 
    https://doi.org/10.9781/ijimai.2023.11.001
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3390
    Open Access
    Resumen:
    Automating decision systems has led to hidden biases in the use of artificial intelligence (AI). Consequently, explaining these decisions and identifying responsibilities has become a challenge. As a result, a new field of research on algorithmic fairness has emerged. In this area, detecting biases and mitigating them is essential to ensure fair and discrimination-free decisions. This paper contributes with: (1) a categorization of biases and how these are associated with different phases of an AI model’s development (including the data-generation phase); (2) a revision of fairness metrics to audit the data and AI models trained with them (considering agnostic models when focusing on fairness); and, (3) a novel taxonomy of the procedures to mitigate biases in the different phases of an AI model’s development (pre-processing, training, and post-processing) with the addition of transversal actions that help to produce fairer models.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ip2023_11_001.pdf
    Tamaño: 1.032Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • In Press

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    45
    1578
    520
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    51
    2786
    1878

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • A Case-Based Reasoning Model Powered by Deep Learning for Radiology Report Recommendation 

      Amador-Domínguez, Elvira; Serrano, Emilio; Manrique, Daniel; Bajo, Javier (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2021)
      Case-Based Reasoning models are one of the most used reasoning paradigms in expert-knowledge-driven areas. One of the most prominent fields of use of these systems is the medical sector, where explainable models are required. ...
    • Impact of COVID-19 Lockdown in Eating Disorders: A Multicentre Collaborative International Study 

      Baenas, Isabel; Etxandi, Mikel; Munguía, Lucero; Granero, Roser; Mestre-Bach, Gemma ; Sánchez, Isabel; Ortega, Emilio; Andreu, Alba; Moize, Violeta L.; Fernández-Real, Jose-Manuel; Tinahones, Francisco J.; Diéguez, Carlos; Frühbeck, Gema; Le Grange, Daniel; Tchanturia, Kate; Karwautz, Andreas; Zeiler, Michael; Imgart, Hartmut; Zanko, Annika; Favaro, Ángela; Claes, Laurence; Shekriladze, Ia; Serrano‐Troncoso, Eduardo; Cecilia-Costa, Raquel; Rangil, Teresa; Loran Meler, Maria Eulalia; Soriano‐Pacheco, José; Carceller‐Sindreu, Mar; Navarrete, Rosa; Lozano, Meritxell; Linares, Raquel; Gudiol, Carlota; Carratala, Jordi; Plana, María T.; Graell, Montserrat; González-Parra, David; Gómez-del Barrio, José A.; Sepúlveda, Ana R.; Sánchez-González, Jéssica; Machado, Paulo PP; Håkansson, Anders; Túry, Ferenc; Pászthy, Bea; Stein, Daniel; Papezová, Hana; Gricova, Jana; Bax, Brigita; Borisenkov, Mikhail F.; Popov, Sergey V.; Gubin, Denis G.; Petrov, Ivan M.; Isakova, Dilara; Mustafina, Svetlana V.; Kim, Youl‐Ri; Nakazato, Michiko; Godart, Nathalie; van Voren, Robert; Ilnytska, Tetiana; Chen, Jue; Rowlands, Katie; Voderholzer, Ulrich; Monteleone, Alessio M.; Treasure, Janet; Jiménez-Murcia, Susana; Fernández-Aranda, Fernando (Nutrients, 01/2022)
      Background. The COVID-19 lockdown has had a significant impact on mental health. Patients with eating disorders (ED) have been particularly vulnerable. Aims. (1) To explore changes in eating-related symptoms and general ...
    • COVID Isolation Eating Scale (CIES): Analysis of the impact of confinement in eating disorders and obesity—A collaborative international study 

      Fernández‐Aranda, Fernando; Munguía, Lucero; Mestre-Bach, Gemma ; Steward, Trevor; Etxandi, Mikel; Baenas, Isabel; Granero, Roser; Sánchez, Isabel; Ortega, Emilio; Andreu, Alba; Moize, Violeta L.; Fernández‐Real, José M.; Tinahones, Francisco J.; Diegüez, Carlos; Frühbeck, Gema; Le Grange, Daniel; Tchanturia, Kate; Karwautz, Andreas; Zeiler, Michael; Favaro, Ángela; Claes, Laurence; Luyckx, Koen; Shekriladze, Ia; Serrano‐Troncoso, Eduardo; Rangil, Teresa; Loran Meler, Maria Eulalia; Soriano‐Pacheco, José; Carceller‐Sindreu, Mar; Bujalance‐Arguijo, Sara; Lozano, Meritxell; Linares, Raquel; Gudiol, Carlota; Carratala, Jordi; Sánchez‐González, Jéssica; Machado, Paulo PP; Håkansson, Anders; Túry, Ferenc; Pászthy, Bea; Stein, Daniel; Papezová, Hana; Bax, Brigita; Borisenkov, Mikhail F.; Popov, Sergey V.; Kim, Youl‐Ri; Nakazato, Michiko; Godart, Nathalie; van Voren, Robert; Ilnytska, Tetiana; Chen, Jue; Rowlands, Katie; Treasure, Janet; Jiménez‐Murcia, Susana (European Eating Disorders Review, 2020)
      Confinement during the COVID-19 pandemic is expected to have a serious and complex impact on the mental health of patients with an eating disorder (ED) and of patients with obesity. The present manuscript has the following ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja