Mostrar el registro sencillo del ítem

dc.contributor.authorMichelena, Álvaro
dc.contributor.authorAveleira-Mata, Jose
dc.contributor.authorJove, Esteban
dc.contributor.authorAlaiz-Moretón, Héctor
dc.contributor.authorQuintián, Héctor
dc.contributor.authorCalvo-Rolle, José Luis
dc.date2023-09
dc.date.accessioned2023-09-06T07:20:37Z
dc.date.available2023-09-06T07:20:37Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/15213
dc.description.abstractThe prevalence of Internet of Things (IoT) systems deployment is increasing across various domains, from residential to industrial settings. These systems are typically characterized by their modest computationa requirements and use of lightweight communication protocols, such as MQTT. However, the rising adoption of IoT technology has also led to the emergence of novel attacks, increasing the susceptibility of these systems to compromise. Among the different attacks that can affect the main IoT protocols are Denial of Service attacks (DoS). In this scenario, this paper evaluates the performance of six supervised classification techniques (Decision Trees, Multi-layer Perceptron, Random Forest, Support Vector Machine, Fisher Linear Discriminant and Bernoulli and Gaussian Naive Bayes) combined with the Principal Component Analysis (PCA) feature extraction method for detecting DoS attacks in MQTT networks. For this purpose, a real dataset containing all the traffic generated in the network and many attacks executed has been used. The results obtained with several models have achieved performances above 99% AUC.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligencees_ES
dc.relation.ispartofseries;vol. 8, nº 3
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/3363es_ES
dc.rightsopenAccesses_ES
dc.subjectcybersecurityes_ES
dc.subjectDoS Attackes_ES
dc.subjectfeature extractiones_ES
dc.subjectMQTTes_ES
dc.subjectsoft computinges_ES
dc.subjectsupervised learninges_ES
dc.subjectmachine learning classifieres_ES
dc.subjectIJIMAIes_ES
dc.titleDevelopment of an Intelligent Classifier Model for Denial of Service Attack Detectiones_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttps://doi.org/10.9781/ijimai.2023.08.003


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem