• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2024
    • vol. 9, nº 1, diciembre 2024
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2024
    • vol. 9, nº 1, diciembre 2024
    • Ver ítem

    Analysis of Gender Differences in Facial Expression Recognition Based on Deep Learning Using Explainable Artificial Intelligence

    Autor: 
    Manresa-Yee, Cristina
    ;
    Ramis, Silvia
    ;
    Buades, José M.
    Fecha: 
    2024
    Palabra clave: 
    explainable artificial intelligence; facial expression; gender differences; XAI; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/14589
    DOI: 
    https://doi.org/10.9781/ijimai.2023.04.003
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3300
    Open Access
    Resumen:
    Potential uses of automated Facial Expression Recognition (FER) cover a wide range of applications such as customer behavior analysis, healthcare applications or providing personalized services. Data for machine learning play a fundamental role, therefore, understanding the relevancy of the data in the outcomes is of utmost importance. In this work we present a study on how gender influences the learning of a FER system. We analyze with Explainable Artificial intelligence (XAI) techniques how gender contributes to the learning and assess which facial expressions are more similar regarding face regions that impact on the classification. Results show that there exist common regions in some expressions both for females and males with different intensities (e.g. happiness); however, there are other expressions like disgust, where important face regions differ. The insights of this work will help improving FER systems and understand the source of any inequality.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_9_1_2.pdf
    Tamaño: 1.077Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 9, nº 1, diciembre 2024

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    87
    275
    184
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    145
    168
    208

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • CYSAS-S3: a novel dataset for validating cyber situational awareness related tools for supporting military operations 

      Daton Medenou, Roumen ; Calzado Mayo, Victor Manuel; Garcia Balufo, Miriam; Páramo Castrillo, Miguel; González Garrido, Francisco José; Luis Martinez, Alvaro; Nevado Catalán, David; Hu, Ao; Sandoval Rodriguez-Bermejo, David; Maestre Vidal, Jorge; Pasqual de Riquelme, Gerardo Ramis; Berardi, Antonio; De Santis, Paolo; Torelli, Francesco; Llopis Sánchez, Salvador (ACM International Conference Proceeding Series, 2020)
      The lack of suitable datasets and evaluation processes entails one of the most challenging gaps on the digital transformation era, where data-driven solutions like machine learning algorithms constitute a key pillar of the ...
    • Introducing the CYSAS-S3 Dataset for Operationalizing a Mission-Oriented Cyber Situational Awareness 

      Medenou Choumanof, Roumen Daton; Llopis Sánchez, Salvador; Calzado Mayo, Victor Manuel; Garcia Balufo, Miriam; Páramo Castrillo, Miguel; González Garrido, Francisco José; Luis Martinez, Alvaro; Nevado Catalán, David; Hu, Ao; Rodriguez-Bermejo, David Sandoval; Pasqual De Riquelme, Gerardo Ramis; Sotelo Monge, Marco Antonio; Berardi, Antonio; De Santis, Paolo; Torelli, Francesco; Maestre Vidal, Jorge (Sensors, 2022)
      The digital transformation of the defence sector is not exempt from innovative requirements and challenges, with the lack of availability of reliable, unbiased and consistent data for training automatisms (machine learning ...
    • The slowdown of new infections by human retroviruses has reached a plateau in Spain 

      de Mendoza, Carmen; Carrizo, Paula; Sauleda, Silvia; Richart, Alberto; Rando, Ariadna; Miró, Elisenda; Benito, Rafael; Ayerdi, Oscar; Encinas, Begoña; Aguilera, Antonio; Reina, Gabriel; Rojo, Silvia; González, Rocío; Fernández-Ruiz, Mario; Liendo, Paloma; Montiel, Natalia; Roc, Lourdes; Treviño, Ana; Pozuelo, María José; Soriano, Vicente (Journal of Medical Virology, 2023)
      The 2022 annual meeting of the HTLV & HIV-2 Spanish Network was held in Madrid on December 14. We summarize here the main information presented and discussed at the workshop and review time trends for human retroviral ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja