Attentive Flexible Translation Embedding in Top-N Sparse Sequential Recommendations
Autor:
Seo, Min-Ji
; Kim, Myung-Ho
Fecha:
12/2023Palabra clave:
Revista / editorial:
International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)Tipo de Ítem:
articleDirección web:
https://www.ijimai.org/journal/bibcite/reference/3207Resumen:
Sequential recommendation aims to predict the user’s next action based on personal action sequences. The major challenge in this task is how to achieve high performance recommendation under the data sparsity problem. Translation-based recommendations, which learn distance metrics to capture interactions between users and items in sequential recommendations, are a promising method to overcome this issue. However, a disadvantage of translation-based recommendations is that they capture long-term preferences of the user and complex item transitions. In this paper, we propose attentive flexible translation for recommendations (AFTRec) to tackle data sparsity problem by capturing a user’s dynamic preferences and complex interactions between items in user’s purchasing behaviors. In particular, we first encode semantic information of an item related to user’s purchasing behaviors as the user-specific item translation vectors. We also design a transition graph and encode complex item transitions as correlation-specific item translation vectors. Finally, we adopt a flexible distance metric that considers directions with respect to the translation vectors in the same space for predicting the next item. To evaluate the performance of our method, we conducted experiments on four sparse datasets and one dense dataset with different domains. The experimental results demonstrate that our proposed AFTRec outperforms the state-of-the-art baselines in terms of normalized discounted cumulative
gain and hit rate on sparse datasets.
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
42 |
101 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
50 |
68 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
mlCAF: Multi-Level Cross-Domain Semantic Context Fusioning for Behavior Identification
Asif Razzaq, Muhammad; Villalonga, Claudia ; Sungyoung, Lee; Akhtar, Usman; Ali, Maqbool; Kim, Eun-Soo; Masood Khattak, Asad; Seung, Hyonwoo; Hur, Taeho; Bang, Jaehun; Kim, Dohyeong; Ali Khan, Wajahat (Sensors, 10/2017)The emerging research on automatic identification of user’s contexts from the cross-domain environment in ubiquitous and pervasive computing systems has proved to be successful. Monitoring the diversified user’s contexts ... -
Acoustic Classification of Mosquitoes using Convolutional Neural Networks Combined with Activity Circadian Rhythm Information
Kim, Jaehoon; Oh, Jeongkyu; Heo, Tae-Young (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2021)Many researchers have used sound sensors to record audio data from insects, and used these data as inputs of machine learning algorithms to classify insect species. In image classification, the convolutional neural network ... -
El aprendizaje moral y la vida buena
López-Jurado Puig, Marta; Kim, Sowon (Revista Española de Pedagogía, 31/05/2013)En la actualidad tenemos abundante teoría sobre la educación moral, pero nuestro conocimiento de cómo se llega a esta experiencia moral que forja la virtud es limitado. El propósito de nuestro trabajo es presentar y analizar ...