• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 4, december 2023
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 4, december 2023
    • Ver ítem

    Attentive Flexible Translation Embedding in Top-N Sparse Sequential Recommendations

    Autor: 
    Seo, Min-Ji
    ;
    Kim, Myung-Ho
    Fecha: 
    12/2023
    Palabra clave: 
    deep learning; gated graph neural network; knowledge graph embedding; recommendation systems; self-attention; sequential recommendation; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/14354
    DOI: 
    https://doi.org/10.9781/ijimai.2022.10.007
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3207
    Open Access
    Resumen:
    Sequential recommendation aims to predict the user’s next action based on personal action sequences. The major challenge in this task is how to achieve high performance recommendation under the data sparsity problem. Translation-based recommendations, which learn distance metrics to capture interactions between users and items in sequential recommendations, are a promising method to overcome this issue. However, a disadvantage of translation-based recommendations is that they capture long-term preferences of the user and complex item transitions. In this paper, we propose attentive flexible translation for recommendations (AFTRec) to tackle data sparsity problem by capturing a user’s dynamic preferences and complex interactions between items in user’s purchasing behaviors. In particular, we first encode semantic information of an item related to user’s purchasing behaviors as the user-specific item translation vectors. We also design a transition graph and encode complex item transitions as correlation-specific item translation vectors. Finally, we adopt a flexible distance metric that considers directions with respect to the translation vectors in the same space for predicting the next item. To evaluate the performance of our method, we conducted experiments on four sparse datasets and one dense dataset with different domains. The experimental results demonstrate that our proposed AFTRec outperforms the state-of-the-art baselines in terms of normalized discounted cumulative gain and hit rate on sparse datasets.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai8_4_5.pdf
    Tamaño: 2.318Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 8, nº 4, december 2023

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    42
    101
    97
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    50
    68
    29

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • mlCAF: Multi-Level Cross-Domain Semantic Context Fusioning for Behavior Identification 

      Asif Razzaq, Muhammad; Villalonga, Claudia ; Sungyoung, Lee; Akhtar, Usman; Ali, Maqbool; Kim, Eun-Soo; Masood Khattak, Asad; Seung, Hyonwoo; Hur, Taeho; Bang, Jaehun; Kim, Dohyeong; Ali Khan, Wajahat (Sensors, 10/2017)
      The emerging research on automatic identification of user’s contexts from the cross-domain environment in ubiquitous and pervasive computing systems has proved to be successful. Monitoring the diversified user’s contexts ...
    • Acoustic Classification of Mosquitoes using Convolutional Neural Networks Combined with Activity Circadian Rhythm Information 

      Kim, Jaehoon; Oh, Jeongkyu; Heo, Tae-Young (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2021)
      Many researchers have used sound sensors to record audio data from insects, and used these data as inputs of machine learning algorithms to classify insect species. In image classification, the convolutional neural network ...
    • El aprendizaje moral y la vida buena 

      López-Jurado Puig, Marta; Kim, Sowon (Revista Española de Pedagogía, 31/05/2013)
      En la actualidad tenemos abundante teoría sobre la educación moral, pero nuestro conocimiento de cómo se llega a esta experiencia moral que forja la virtud es limitado. El propósito de nuestro trabajo es presentar y analizar ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja