• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 2, june 2023
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 2, june 2023
    • Ver ítem

    Real World Anomalous Scene Detection and Classification using Multilayer Deep Neural Networks

    Autor: 
    Jan, Atif
    ;
    Khan, Gul Muhammad
    Fecha: 
    06/2023
    Palabra clave: 
    volume crime classification; volume crime detection; malicious activity detection; deep learning; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/14335
    DOI: 
    https://doi.org/10.9781/ijimai.2021.10.010
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3039
    Open Access
    Resumen:
    Surveillance videos record malicious events in a locality utilizing various machine learning algorithms for detection. Deep-learning algorithms being the most prominent AI algorithms are data-hungry as well as computationally expensive. These algorithms perform better when trained over a diverse and huge set of examples. These modern AI methods have a dire need of utilizing human intelligence to pamper the problem in such a way as to reduce the ultimate effort in terms of computational cost. In this research work, a novel methodology termed Bag of Focus (BoF) based training methodology has been proposed. BoF is based on the concept of selecting motion-intensive blocks in a long video, for training different deep neural networks (DNN's). The methodology reduced the computational overhead by 90% (ten times) in comparison to when full-length videos are entertained. It has been observed that training networks using BoF are equally effective in terms of performance for the same network trained over the full-length dataset. In this research work, firstly, a fine-grained annotated dataset including instance and activity information has been developed for real-world volume crimes. Secondly, a BoF-based methodology has been introduced for effective training of the state-of-the-art 3D, and 2D Convolutional Neural Networks (CNNs). Lastly, a comparison between the state-of-the-art networks have been presented for malicious event recognition in videos. It has been observed that 2D CNN even with lesser parameters achieved a promising classification accuracy of 98.7% and Area under the curve (AUC) of 99.7%.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai8_2_15_0.pdf
    Tamaño: 4.422Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 8, nº 2, june 2023

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    197
    231
    112
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    140
    98
    58

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • mlCAF: Multi-Level Cross-Domain Semantic Context Fusioning for Behavior Identification 

      Asif Razzaq, Muhammad; Villalonga, Claudia ; Sungyoung, Lee; Akhtar, Usman; Ali, Maqbool; Kim, Eun-Soo; Masood Khattak, Asad; Seung, Hyonwoo; Hur, Taeho; Bang, Jaehun; Kim, Dohyeong; Ali Khan, Wajahat (Sensors, 10/2017)
      The emerging research on automatic identification of user’s contexts from the cross-domain environment in ubiquitous and pervasive computing systems has proved to be successful. Monitoring the diversified user’s contexts ...
    • Editor’s Note 

      Yang, Jiachen; Song, Houbing; Khurram Khan, Muhammad (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2023)
      With the rapid development of information and communication technologies, artificial intelligence and IoTs, more and more advanced technologies, such as machine learning, reinforcement learning, neural networks and fuzzy ...
    • Automated Detection of COVID-19 using Chest X-Ray Images and CT Scans through Multilayer-Spatial Convolutional Neural Networks 

      Khattak, Muhammad Irfan; Al-Hasan, Mu'ath; Jan, Atif; Saleem, Nasir; Verdú, Elena ; Khurshid, Numan (International Journal of Interactive Multimedia and Artificial Intelligence, 2021)
      The novel coronavirus-2019 (Covid-19), a contagious disease became a pandemic and has caused overwhelming effects on the human lives and world economy. The detection of the contagious disease is vital to avert further ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja