• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 2, june 2023
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 2, june 2023
    • Ver ítem

    A Hybrid Parallel Classification Model for the Diagnosis of Chronic Kidney Disease

    Autor: 
    Singh, Vijendra
    ;
    Jain, Divya
    Fecha: 
    06/2023
    Palabra clave: 
    chronic kidney; disease diagnosis; clinical dataset; support vector machine; dimensionality reduction; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/14334
    DOI: 
    https://doi.org/10.9781/ijimai.2021.10.008
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3036
    Open Access
    Resumen:
    Chronic Kidney Disease (CKD) has become a prevalent disease nowadays, affecting people globally around the world. Accurate prediction of CKD progression over time is essential for reducing its associated mortality and morbidity rates. This paper proposes a fast, novel hybrid approach to diagnose Chronic Renal Disease. The proposed approach is based on the optimization of SVM classifier with the hybridized dimensionality reduction approach to identify the most informative parameters for CKD diagnosis. It handles the selection of features through two steps. The first one is a filter-based approach using ReliefF method to assign weights and ranks to each feature of the dataset. The second step is the dimensionality reduction of the best-selected subset by means of PCA, a feature extraction technique. For faster execution of datasets, simultaneous execution on multiple processors is employed. The proposed model achieved the highest prediction accuracy of 92.5% on the clinical CKD dataset compared to existing methods - ‘CFS+SVM’ (60.45%), ‘ReliefF + SVM’ (86%), ‘MIFS + SVM’ (56.72%), ‘ReliefF + CFS + SVM’ (54.37). The proposed work is also examined on the benchmarked Chronic Kidney Disease Dataset and achieved classification accuracy of 98.5% compared to the accuracy with other methods -‘CFS+SVM’ (92.7%), ‘ReliefF + SVM’ (89.6%), ‘MIFS + SVM’ (94.7%). The experimental outcomes positively demonstrate that the proposed hybridized model is effective in undertaking medical data classification tasks and is, therefore, a promising tool for the diagnosis of CKD patients. The proposed approach is statistically validated with the Friedman test with significant results compared to other techniques. The proposed approach also executes in the least time with improved prediction accuracy and competes with and even outperforms other methods in the literature.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai8_2_2.pdf
    Tamaño: 1.579Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 8, nº 2, june 2023

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    248
    259
    173
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    98
    138
    82

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Personality and Education Mining based Job Advisory System 

      Choudhary, Rajendra S.; Kukreja, Rajul; Jain, Nitika; Jain, Shikha (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2014)
      Every job demands an employee with some specific qualities in addition to the basic educational qualification. For example, an introvert person cannot be a good leader despite of a very good academic qualification. Thinking ...
    • Predictive text analysis using eye blinks 

      Chaudhary, Gopal; Lamba, Puneet Singh; Jolly, Harman Singh; Poply, Sakaar; Khari, Manju; Verdú, Elena (Elsevier Ltd, 2021)
      The current work aims to facilitate interaction with others to those with the inability to perform activities requiring motor skills or those who cannot speak. It proposes a modus operandi or a system based on Histogram ...
    • Design and Complex Dynamics of Potra–Pták-Type Optimal Methods for Solving Nonlinear Equations and Its Applications 

      Chand, Prem Bahadur; Chicharro, Francisco Israel ; Garrido, Neus; Jain, Pankaj (MDPIMathematics, 11/10/2019)
      In this paper, using the idea of weight functions on the Potra–Pták method, an optimal fourth order method, a non optimal sixth order method, and a family of optimal eighth order methods are proposed. These methods are ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja