• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 2, june 2023
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 2, june 2023
    • Ver ítem

    Cosine Similarity Based Hierarchical Skeleton and Cross Indexing for Large Scale Image Retrieval Using Mapreduce Framework

    Autor: 
    Qianwen, Zhong
    Fecha: 
    06/2023
    Palabra clave: 
    cross indexing; similarity; hierarchical skeleton; image retrieval; similarity measure; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/14326
    DOI: 
    https://doi.org/10.9781/ijimai.2023.01.008
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3255
    Open Access
    Resumen:
    The imaging data in various fields like industries, institutions, medical, and so on has grown exponentially in recent years. An innovative software solution is required for the efficient management of image data. The MapReduce framework is used for large-scale image data processing. Various cross-indexing techniques are developed to transform the image into binary sequences but retrieving the image from the reducer on the feature vector results in a major challenge. Image retrieval using large-scale image databases attained major attention, where cross-indexing plays a key role in the research community. Therefore, in this research, a new method for image retrieval, named Cosine Similarity-based hierarchical skeleton and cross-indexing, is proposed to perform the retrieval process in the MapReduce framework effectively. The feature vector of the images is converted to binary sequences. The Most Significant Bit (MSB) of the binary code is used to store the images in the mapper using the cross-indexing model. The image retrieval process is achieved through the reducer based on the tanimoto similarity measure. The binary sequence for the query image is calculated based on the feature vector. The MSB bit of the binary code is matched with the MSB code of the images in the mapper to achieve the retrieval process. The proposed method effectively achieved better performance through the cross-indexing model with the usage of the feature vector. The performance of the proposed method is compared with the existing techniques using the UK bench dataset. The proposed method attains the values of 0.784, 0.729, 0.75, 31.23, 17.84secfor F1-score, precision, recall, computational cost, and computational time with the query set-1 by considering four mappers.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai8_2_11.pdf
    Tamaño: 2.686Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 8, nº 2, june 2023

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    101
    111
    41
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    21
    35
    14

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja