• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 2, june 2023
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 2, june 2023
    • Ver ítem

    Deep Learning Assisted Medical Insurance Data Analytics With Multimedia System

    Autor: 
    Zhang, Cheng
    ;
    Vinodhini, B.
    ;
    Muthu, Bala Anand
    Fecha: 
    06/2023
    Palabra clave: 
    convolutional neural network (CNN); deep learning; image; medical images; segmentation; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/14324
    DOI: 
    https://doi.org/10.9781/ijimai.2023.01.009
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3253
    Open Access
    Resumen:
    Big Data presents considerable challenges to deep learning for transforming complex, high-dimensional, and heterogeneous biomedical data into health care data. Various kinds of data are analyzed in recent biomedical research that includes e-health records, medical imaging, text, and IoT sensor data, which are complex, badly labeled, heterogeneous, and usually unstructured. Conventional statistical learning and data mining methods usually require first to extract features to acquire more robust and effective variables from those data. These features help build clustering or prediction models. New useful paradigms are provided by the latest advancements based on deep learning technologies for obtaining end-to-end learning techniques from complex data. The abstractions of data are represented using the multiple layers of deep learning for building computational models. Clinician performance is augmented by the prospective of deep learning models in medical imaging interpretation, and automated segmentation is used to reduce the time for the diagnosis. This work presents a convolution neural network-based deep learning infrastructure that performs medical imaging data analysis in various pipeline stages, including data-loading, data-augmentation, network architectures, loss functions, and evaluation metrics. Our proposed deep learning approach supports both 2D as well as 3D medical image analysis. We evaluate the proposed system's performance using metrics like sensitivity, specificity, accuracy, and precision over the clinical data with and without augmentation.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai8_2_7.pdf
    Tamaño: 4.859Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 8, nº 2, june 2023

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    155
    129
    37
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    65
    43
    19

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Interactive Causal Correlation Space Reshape for Multi-Label Classification 

      Zhang, Chao; Cheng, Yusheng; Wang, Yibin; Xu, Yuting (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2022)
      Most existing multi-label classification models focus on distance metrics and feature spare strategies to extract specific features of labels. Those models use the cosine similarity to construct the label correlation matrix ...
    • Multi-level integrated health management model for empty nest elderly people's to strengthen their lives 

      Zhang, G.; Guo, Z.; Cheng, Q.; Sanz Prieto, Iván ; Hamad, A.A. (Elsevier Ltd, 2021)
      The old-age “empty-nest” family in China has become more prevalent in the recent past. This research focused on strengthening the lives of empty nests elderly people during their distress using an appropriate instrumental ...
    • Predicting Consumer Electronics E-Commerce: Technology Acceptance Model and Logistics Service Quality 

      Wu, Cheng-Feng; Zhang, Kunkun; Lin, Meng-Chen; Chiou, Chei-Chang (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2024)
      In online shopping for consumer electronics, information and physical flows are crucial determinants of consumer purchase intentions. This study examines these factors by integrating the Technology Acceptance Model with ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja