• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 2, june 2023
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 2, june 2023
    • Ver ítem

    HDDSS: An Enhanced Heart Disease Decision Support System using RFE-ABGNB Algorithm

    Autor: 
    Dhilsath Fathima, M.
    ;
    Justin Samuel, S.
    ;
    Raja, S. P.
    Fecha: 
    06/2023
    Palabra clave: 
    ABGNB algorithm; heart disease prediction; machine learning; recursive feature elimination; UCI heart disease dataset; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/14323
    DOI: 
    https://doi.org/10.9781/ijimai.2021.10.003
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3027
    Open Access
    Resumen:
    Heart disease is the leading cause of mortality globally. Heart disease refers to a range of disorders that affect the heart and blood vessels. The risks of developing heart disease become minimized if heart disease is detected early. Previous studies have suggested many heart disease decision-support systems based on machine learning (ML) algorithms. However, the lower prediction accuracy is the main issue in these heart disease decisionsupport systems. The proposed work developed a heart disease decision-support system (HDDSS) that can predict whether or not a person has heart disease. The main goal of this research work is to use the RFEABGNB to improve HDDSS prediction accuracy. The Cleveland heart disease dataset is used for training and validating the proposed HDDSS. The two significant stages of HDDSS are the feature election stage and the classification modeling stage. The recursive feature elimination (RFE) technique is used in the first stage of HDDSS to select the relevant features of the heart disease dataset. In the second stage of HDDSS, the proposed Adaptive boosted Gaussian Naïve Bayes (ABGNB) algorithm has been used to construct a classification model for training and validating a heart disease decision-support system. An output of HDDSS is analyzed using various classification output measures. According to the results obtained, our proposed method attained a predictive performance of 92.87 percent. This HDDSS model would perform well when compared to other heart disease decision-support systems found in the literature. According to our experimental analysis, the RFE-ABGNB focused heart disease decision-support system is more appropriate for a heart disease prediction.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai8_2_3.pdf
    Tamaño: 1.502Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 8, nº 2, june 2023

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    109
    95
    74
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    30
    57
    41

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Deep Feature Representation and Similarity Matrix based Noise Label Refinement Method for Efficient Face Annotation 

      Suruliandi, A.; Kasthuri, A.; Raja, S. P. (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2021)
      Face annotation is a naming procedure that assigns the correct name to a person emerging from an image. Faces that are manually annotated by people in online applications include incorrect labels, giving rise to the issue ...
    • Libertarias: el discurso hedonista de Vicente Aranda 

      Berenguer Ubeda, Jorge; Rajas, Mario; Miranda, Francisco Javier (Área Abierta, 05/2019)
      Este artículo aborda la poética de Vicente Aranda en su filme Libertarias (1996). Desde la perspectiva metodológica del análisis textual fílmico, se estudia el discurso narrativo y la construcción formal de la obra. Las ...
    • A Word Embedding Based Approach for Focused Web Crawling Using the Recurrent Neural Network 

      Dhanith, P. R. Joe; Surendiran, B.; Raja, S. P. (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2021)
      Learning-based focused crawlers download relevant uniform resource locators (URLs) from the web for a specific topic. Several studies have used the term frequency-inverse document frequency (TF-IDF) weighted cosine vector ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja