• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 7, december 2022
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 7, december 2022
    • Ver ítem

    Detection of Improperly Worn Face Masks using Deep Learning – A Preventive Measure Against the Spread of COVID-19

    Autor: 
    Bhaik, Anubha
    ;
    Singh, Vaishnavi
    ;
    Gandotra, Ekta
    ;
    Gupta, Deepak
    Fecha: 
    12/2022
    Palabra clave: 
    coronavirus COVID-19; mask classification; mobileNetV2; openCV; transfer learning; IJIMAI
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13929
    DOI: 
    https://doi.org/10.9781/ijimai.2021.09.003
    Dirección web: 
    https://ijimai.org/journal/bibcite/reference/3016
    Open Access
    Resumen:
    Coronavirus disease 2019 has had a pressing impact on people all around the world. Ceasing the spread of this infectious disease is the urgent need of the hour. A vital method of protection against the virus is wearing masks in public areas. Not merely wearing masks but wearing masks properly can ensure that the respiratory droplets do not get transmitted to other people. In this paper, we have proposed a deep learning-based model, which can be used to detect people who are not wearing their face masks properly. A convolutional neural network model based on the concept of transfer learning is trained on a self-made dataset of images and implemented with light-weighted neural network called MobileNetV2 for mobile architectures. OpenCV is used with Caffe framework to detect faces in an input frame which are further forwarded to our trained convolutional neural network for classification. The method has been implemented on various input images and classification results have been obtained for the same. The experimental results show that the proposed model achieves a testing accuracy and training accuracy of 93.58% and 92.27% respectively. Optimal results with high confidence scores and correct classification have also been achieved when the proposed model was tested on individual input images.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai7_7_2.pdf
    Tamaño: 684.2Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 7, nº 7, december 2022

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    33
    17
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    8
    34

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Design of Integrated Artificial Intelligence Techniques for Video Surveillance on IoT Enabled Wireless Multimedia Sensor Networks 

      Mansour, Romany F.; Soto, Carlos; Soto-Díaz, Roosvel; Escorcia Gutierrez, José; Gupta, Deepak; Khanna, Ashish (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2022)
      The recent advancements in the Internet of Things (IoT) and Wireless Multimedia Sensor Networks (WMSN) made high-speed multimedia streaming, data processing, and essential analytics processes with minimal delay. Multimedia ...
    • A Useful Metaheuristic for Dynamic Channel Assignment in Mobile Cellular Systems 

      Kumar Singh, Deepak; Srinivas, K.; Bhagwan Das, D. (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2012)
      The prime objective of a Channel Assignment Problem (CAP) is to assign appropriate number of required channels to each cell in a way to achieve both efficient frequency spectrum utilization and minimization of interference ...
    • Infected Fruit Part Detection using K-Means Clustering Segmentation Technique 

      Dubey, Shiv Ram; Dixit, Pushkar; Singh, Nishant; Gupta, Jay Prakash (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2013)
      Nowadays, overseas commerce has increased drastically in many countries. Plenty fruits are imported from the other nations such as oranges, apples etc. Manual identification of defected fruit is very time consuming. This ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja