• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 6, september 2022
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 6, september 2022
    • Ver ítem

    A Clustering Algorithm Based on an Ensemble of Dissimilarities: An Application in the Bioinformatics Domain

    Autor: 
    Martín Merino, Manuel
    ;
    López Rivero, Alfonso José
    ;
    Alonso, Vidal
    ;
    Vallejo, Marcelo
    ;
    Ferreras, Antonio
    Fecha: 
    09/2022
    Palabra clave: 
    bioinformatics; clustering; kernel methods; machine learning; metric learning; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13904
    DOI: 
    https://doi.org/10.9781/ijimai.2022.09.007
    Dirección web: 
    https://ijimai.org/journal/bibcite/reference/3181
    Open Access
    Resumen:
    Clustering algorithms such as k-means depend heavily on choosing an appropriate distance metric that reflect accurately the object proximities. A wide range of dissimilarities may be defined that often lead to different clustering results. Choosing the best dissimilarity is an ill-posed problem and learning a general distance from the data is a complex task, particularly for high dimensional problems. Therefore, an appealing approach is to learn an ensemble of dissimilarities. In this paper, we have developed a semi-supervised clustering algorithm that learns a linear combination of dissimilarities considering incomplete knowledge in the form of pairwise constraints. The minimization of the loss function is based on a robust and efficient quadratic optimization algorithm. Besides, a regularization term is considered that controls the complexity of the distance metric learned avoiding overfitting. The algorithm has been applied to the identification of tumor samples using the gene expression profiles, where domain experts provide often incomplete knowledge in the form of pairwise constraints. We report that the algorithm proposed outperforms a standard semi-supervised clustering technique available in the literature and clustering results based on a single dissimilarity. The improvement is particularly relevant for applications with high level of noise.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai7_6_1.pdf
    Tamaño: 2.477Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 7, nº 6, september 2022

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    11
    78
    149
    328
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    9
    56
    48
    88

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • SMEs and Sustainable Practices: Identifying Key Factors from Spanish Evidence 

      Clemente-Almendros, José Antonio; Vallejo García, Marcelo; Blanco-Hernández, María (Sage Open, 2025)
      Understanding the complex process of adopting sustainable practices in small and medium-sized enterprises (SMEs) is a challenging but necessary task, given the prevalence of these companies and the institutional pressure ...
    • Empirical Analysis of Ethical Principles Applied to Different AI Uses Cases 

      López Rivero, Alfonso José; Beato, M. Encarnación; Muñoz Martínez, César; Cortiñas Vázquez, Pedro Gonzalo (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2022)
      In this paper, we present an empirical study on the perception of the ethical challenges of artificial intelligence groups in the classification made by the European Union (EU). The study seeks to identify the ethical ...
    • Introducing the CYSAS-S3 Dataset for Operationalizing a Mission-Oriented Cyber Situational Awareness 

      Medenou Choumanof, Roumen Daton; Llopis Sánchez, Salvador; Calzado Mayo, Victor Manuel; Garcia Balufo, Miriam; Páramo Castrillo, Miguel; González Garrido, Francisco José; Luis Martinez, Alvaro; Nevado Catalán, David; Hu, Ao; Rodriguez-Bermejo, David Sandoval; Pasqual De Riquelme, Gerardo Ramis; Sotelo Monge, Marco Antonio; Berardi, Antonio; De Santis, Paolo; Torelli, Francesco; Maestre Vidal, Jorge (Sensors, 2022)
      The digital transformation of the defence sector is not exempt from innovative requirements and challenges, with the lack of availability of reliable, unbiased and consistent data for training automatisms (machine learning ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja