Mostrar el registro sencillo del ítem

dc.contributor.authorLing, Yongfa
dc.contributor.authorGuan, Wenbo
dc.contributor.authorRuan, Qiang
dc.contributor.authorSong, Heping
dc.contributor.authorLai, Yuping
dc.date2022-09
dc.date.accessioned2022-10-24T11:57:46Z
dc.date.available2022-10-24T11:57:46Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/13710
dc.description.abstracthe finite invert Beta-Liouville mixture model (IBLMM) has recently gained some attention due to its positive data modeling capability. Under the conventional variational inference (VI) framework, the analytically tractable solution to the optimization of the variational posterior distribution cannot be obtained, since the variational object function involves evaluation of intractable moments. With the recently proposed extended variational inference (EVI) framework, a new function is proposed to replace the original variational object function in order to avoid intractable moment computation, so that the analytically tractable solution of the IBLMM can be derived in an effective way. The good performance of the proposed approach is demonstrated by experiments with both synthesized data and a real-world application namely text categorization.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/3157es_ES
dc.rightsopenAccesses_ES
dc.subjectbayesian inferencees_ES
dc.subjectextended variational inferencees_ES
dc.subjectmixture modeles_ES
dc.subjecttext categorizationes_ES
dc.subjectinverted beta-liouville distributiones_ES
dc.subjectIJIMAIes_ES
dc.titleVariational Learning for the Inverted Beta-Liouville Mixture Model and Its Application to Text Categorizationes_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttps://doi.org/10.9781/ijimai.2022.08.006


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem