Mostrar el registro sencillo del ítem

dc.contributor.authorKenye, Lhilo
dc.contributor.authorKala, Rahul
dc.date2022-06
dc.date.accessioned2022-10-10T11:49:55Z
dc.date.available2022-10-10T11:49:55Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/13587
dc.description.abstractSampling-based motion planning in the field of robot motion planning has provided an effective approach to finding path for even high dimensional configuration space and with the motivation from the concepts of sampling based-motion planners, this paper presents a new sampling-based planning strategy called Optimistic Motion Planning using Recursive Sub-Sampling (OMPRSS), for finding a path from a source to a destination sanguinely without having to construct a roadmap or a tree. The random sample points are generated recursively and connected by straight lines. Generating sample points is limited to a range and edge connectivity is prioritized based on their distances from the line connecting through the parent samples with the intention to shorten the path. The planner is analysed and compared with some sampling strategies of probabilistic roadmap method (PRM) and the experimental results show agile planning with early convergence.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 7, nº 4
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/3120es_ES
dc.rightsopenAccesses_ES
dc.subjectprobabilistic roadmapes_ES
dc.subjectsamplinges_ES
dc.subjectplanninges_ES
dc.subjectroboticses_ES
dc.subjectIJIMAIes_ES
dc.titleOptimistic Motion Planning Using Recursive Sub- Sampling: A New Approach to Sampling-Based Motion Planninges_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttps://doi.org/10.9781/ijimai.2022.04.001


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem