Automatic Finding Trapezoidal Membership Functions in Mining Fuzzy Association Rules Based on Learning Automata
Autor:
Anari, Z.
; Hatamlou, A.
; Anari, B.
Fecha:
06/2022Palabra clave:
Revista / editorial:
International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)Tipo de Ítem:
articleDirección web:
https://www.ijimai.org/journal/bibcite/reference/3076Resumen:
Association rule mining is an important data mining technique used for discovering relationships among all data items. Membership functions have a significant impact on the outcome of the mining association rules. An important challenge in fuzzy association rule mining is finding an appropriate membership functions, which is an optimization issue. In the most relevant studies of fuzzy association rule mining, only triangle membership functions are considered. This study, as the first attempt, used a team of continuous action-set learning automata (CALA) to find both the appropriate number and positions of trapezoidal membership functions (TMFs). The spreads and centers of the TMFs were taken into account as parameters for the research space and a new approach for the establishment of a CALA team to optimize these parameters was introduced. Additionally, to increase the convergence speed of the proposed approach and remove bad shapes of membership functions, a new heuristic approach has been proposed. Experiments on two real data sets showed that the proposed algorithm improves the efficiency of the extracted rules by finding optimized membership functions.
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
26 |
96 |
92 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
35 |
241 |
44 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Rey–Osterrieth Complex Figure – copy and immediate recall (3 minutes): Normative data for Spanish-speaking pediatric populations
Arango-Lasprilla, JC; Rivera, D; Ertl, M M; Muñoz Mancilla, J M; García-Guerrero, CE; Rodriguez-Irizarry, W; Aguayo Arelis, A; Rodríguez-Agudelo, Y; Barrios Nevado, MD; Vélez-Coto, M; Yacelga Ponce, TP; Rigabert, A; García de la Cadena, C; Pohlenz Amador, S; Vergara-Moragues, Esperanza ; Soto-Añari, M; Peñalver Guia, AI; Saracostti Schwartzman, M; Ferrer-Cascales, R (NeuroRehabilitation, 2017)OBJECTIVE: To generate normative data for the Rey-Osterrieth Complex Figure (ROCF) in Spanish-speaking pediatric populations. METHOD: The sample consisted of 4,373 healthy children from nine countries in Latin America ... -
Stroop Color-Word Interference Test: Normative data for Spanish-speaking pediatric population
Rivera, D; Morlett-Paredes, A; Peñalver Guia, AI; Irias Escher, MJ; Soto-Añari, M; Aguayo Arelis, A; Rute-Pérez, Sandra; Rodríguez-Lorenzana, A; Rodríguez-Agudelo, Y; Albadalejo-Blázquez, N; García de la Cadena, C; Ibáñez-Alfonso, JA; Rodriguez-Irizarry, W; García-Guerrero, CE; Delgado-Mejía, ID; Padilla-López, A; Vergara-Moragues, Esperanza ; Barrios Nevado, MD; Saracostti Schwartzman, M; Arango-Lasprilla, JC (NeuroRehabilitation, 2017)OBJECTIVE: To generate normative data for the Stroop Word-Color Interference test in Spanish-speaking pediatric populations. METHOD: The sample consisted of 4,373 healthy children from nine countries in Latin America ... -
Modified Wisconsin Card Sorting Test (M-WCST): Normative data for Spanish-speaking pediatric population
Arango-Lasprilla, JC; Rivera, D; Nicholls, E; Aguayo Arelis, A; García de la Cadena, C; Peñalver Guia, AI; Vergara-Moragues, Esperanza ; Rodríguez-Lorenzana, A; Marin-Morales, A; Soto-Añari, A; Lara, L; Rodríguez-Agudelo, Y; Alcázar Tebar, C; Galarza-del-Ángel, J; Rodriguez-Irizarry, W; Ibañez-Alfonso, JA; García-Guerrero, CE; Delgado-Mejía, ID; Pohlenz Amador, S; Sánchez-SanSegundo, M (NeuroRehabilitation, 2017)OBJECTIVE: To generate normative data for the Modified Wisconsin Card Sorting Test (M-WCST) in Spanish-speaking pediatric populations. METHOD: The sample consisted of 4,373 healthy children from nine countries in Latin ...