• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 4, june 2022
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 4, june 2022
    • Ver ítem

    LIPSNN: A Light Intrusion-Proving Siamese Neural Network Model for Facial Verification

    Autor: 
    Alcaide, Asier
    ;
    Patricio, Miguel A.
    ;
    Berlanga, Antonio
    ;
    Arroyo, Angel
    ;
    Cuadrado Gallego, Juan J.
    Fecha: 
    06/2022
    Palabra clave: 
    facial verification; deep learning; artificial neural networks; siamese neural networks; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13579
    DOI: 
    https://doi.org/10.9781/ijimai.2021.11.003
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3046
    Open Access
    Resumen:
    Facial verification has experienced a breakthrough in recent years, not only due to the improvement in accuracy of the verification systems but also because of their increased use. One of the main reasons for this has been the appearance and use of new models of Deep Learning to address this problem. This extension in the use of facial verification has had a high impact due to the importance of its applications, especially on security, but the extension of its use could be significantly higher if the problem of the required complex calculations needed by the Deep Learning models, that usually need to be executed on machines with specialised hardware, were solved. That would allow the use of facial verification to be extended, making it possible to run this software on computers with low computing resources, such as Smartphones or tablets. To solve this problem, this paper presents the proposal of a new neural model, called Light Intrusion-Proving Siamese Neural Network, LIPSNN. This new light model, which is based on Siamese Neural Networks, is fully presented from the description of its two block architecture, going through its development, including its training with the well- known dataset Labeled Faces in the Wild, LFW; to its benchmarking with other traditional and deep learning models for facial verification in order to compare its performance for its use in low computing resources systems for facial recognition. For this comparison the attribute parameters, storage, accuracy and precision have been used, and from the results obtained it can be concluded that the LIPSNN can be an alternative to the existing models to solve the facet problem of running facial verification in low computing resource devices.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_7_4_11.pdf
    Tamaño: 651.1Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 7, nº 4, june 2022

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    20
    64
    69
    121
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    15
    22
    31
    31

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Systematic Approach to Malware Analysis (SAMA) 

      Bermejo-Higuera, Javier; Abad-Aramburu, Carlos; Bermejo Higuera, Juan Ramón; Sicilia Urban, Miguel Ángel; Sicilia, Juan Antonio (Applied Sciences, 02/2020)
      Malware threats pose new challenges to analytic and reverse engineering tasks. It is needed for a systematic approach to that analysis, in an attempt to fully uncover their underlying attack vectors and techniques and find ...
    • A systematic approach to analysis for assessing the security level of cyber-physical systems in the electricity sector 

      Sánchez Rodríguez, Miguel Ángel ; Bermejo-Higuera, Javier ; Bermejo Higuera, Juan Ramón ; Sicilia, Juan Antonio ; González-Crespo, Rubén (Elsevier B.V., 2021)
      In a context of digitalization and technological evolution in all aspects of our lives, the electricity sector could not be left behind. This opens up a new range of possibilities until now unthinkable, which will facilitate ...
    • I Congreso Español de Videojuegos 2022 

      González Calero, Pedro Antonio; Gómez Martín, Marco Antonio; Gómez Martín, Pedro Pablo; Gutiérrez Manjón, Sergio; Gutiérrez Sánchez, Pablo; Peinado, Federico; Sánchez-Ruiz Granados, Antonio; Barbancho, Isabel; Blanco Bueno, Carlos; Botella Nicolás, Ana María; Chover, Miguel; Díaz Álvarez, Josefa; Echeverría, Jorge; Fernández Leiva, Antonio J.; Fernández Ruiz, Marta; Gallego-Durán, Francisco; García Sánchez, Pablo; Gutiérrez Vela, Francisco L; Lara-Cabrera, Raúl; León, Carlos; Moreno, Jorge L.; Lozano Muñoz, Alejandro; Mayor, Jesús; Medina Medina, Nuria; Mejías-Climent, Laura; Mora, Antonio M; Munarriz, Jaime; Patow, Gustavo A.; Sagredo-Olivenza, Ismael; Salinas, María-José; Sanchez I. Peris, Francesc Josep; Sánchez-Ruiz, Antonio A; Shliakhovchuk, Elena; Tejada, Jesus (CEUR Workshop Proceedings, 2022)
      {Resumen no disponible]

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja