• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 4, june 2022
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 4, june 2022
    • Ver ítem

    Automatic Classification of Oral Pathologies Using Orthopantomogram Radiography Images Based on Convolutional Neural Network

    Autor: 
    Laishram, Anuradha
    ;
    Thongam, Khelchandra
    Fecha: 
    06/2022
    Palabra clave: 
    classification; convolutional neural network (CNN); dropout; data pre-processing; orthopantomogram radiography images; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13568
    DOI: 
    https://doi.org/10.9781/ijimai.2021.10.009
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3037
    Open Access
    Resumen:
    An attempt has been made to device a robust method to classify different oral pathologies using Orthopantomogram (OPG) images based on Convolutional Neural Network (CNN). This system will provide a novel approach for the classification of types of teeth (viz., incisors and molar teeth) and also some underlying oral anomalies such as fixed partial denture (cap) and impacted teeth. To this end, various image preprocessing techniques are performed. The input OPG images are resized, pixels are scaled and erroneous data are excluded. The proposed algorithm is implemented using CNN with Dropout and the fully connected layer has been trained using hybrid GA-BP learning. Using the Dropout regularization technique, over fitting has been avoided and thereby making the network to correctly classify the objects. The CNN has been implemented with different convolutional layers and the highest accuracy of 97.92% has been obtained with two convolutional layers.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_7_4_6.pdf
    Tamaño: 907.0Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 7, nº 4, june 2022

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    24
    141
    254
    107
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    18
    105
    93
    62

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja