• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 4, june 2022
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 4, june 2022
    • Ver ítem

    CDPS-IoT: Cardiovascular Disease Prediction System Based on IoT using Machine Learning

    Autor: 
    Ahamed, Jameel
    ;
    Manan Koli, Abdul
    ;
    Ahmad, Khaleel
    ;
    Alam Jamal, Mohd.
    ;
    Gupta, B. B.
    Fecha: 
    06/2022
    Palabra clave: 
    cardiovascular diseases; cloud computing; internet of things; machine Learning; IJIMAI
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13565
    DOI: 
    https://doi.org/10.9781/ijimai.2021.09.002
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3015
    Open Access
    Resumen:
    Internet of Things, Machine learning, and Cloud computing are the emerging domains of information communication and technology. These techniques can help to save the life of millions in the medical assisted environment and can be utilized in health-care system where health expertise is less available. Fast food consumption increased from the past few decades, which makes up cholesterol, diabetes, and many more problems that affect the heart and other organs of the body. Changing lifestyle is another parameter that results in health issues including cardio-vascular diseases. Affirming to the World Health Organization, the cardiovascular diseases, or heart diseases lead to more death than any other disease globally. The objective of this research is to analyze the available data pertaining to cardiovascular diseases for prediction of heart diseases at an earlier stage to prevent it from occurring. The dataset of heart disease patients was taken from Jammu and Kashmir, India and stored over the cloud. Stored data is then pre-processed and further analyzed using machine learning techniques for the prediction of heart diseases. The analysis of the dataset using numerous machines learning techniques like Random Forest, Decision Tree, Naive based, K-nearest neighbors, and Support Vector Machine revealed the performance metrics (F1 Score, Precision and Recall) for all the techniques which shows that Naive Bayes is better without parameter tuning while Random Forest algorithm proved as the best technique with hyperparameter tuning. In this paper, the proposed model is developed in such a systematic way that the clinical data can be obtained through the use of IoT with the help of available medical sensors to predict cardiovascular diseases on a real-time basis.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_7_4_7.pdf
    Tamaño: 491.7Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 7, nº 4, june 2022

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    122
    136
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    94
    82

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • An Automated Negotiation-based Framework via Multi-Agent System for the Construction Domain 

      Mahmoud, Moamin A.; Sharifuddin Ahmad, Mohd; Zaliman Yuso, Mohd; Idrus, Arazi (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 2015)
      In this paper, we propose an automated multi-agent negotiation framework for decision making in the construction domain. It enables software agents to conduct negotiations and autonomously make decisions. The proposed ...
    • A Solution Generator Algorithm for Decision Making based Automated Negotiation in the Construction Domain 

      Mahmoud, Moamin; Ahmad, Mohd Sharifuddin; Idrus, Arazi; Yahya, Azani; Husen, Hapsa (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2017)
      In this paper, we present our work-in-progress of a proposed framework for automated negotiation in the construction domain. The proposed framework enables software agents to conduct negotiations and autonomously make ...
    • Genetic Algorithm for Restricted Maximum k-Satisfiability in the Hopfield Network 

      Kasihmuddin, Mohd Shareduwan Bin Mohd; Mansor, Mohd Asyraf Bin; Sathasivam, Saratha (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2016)
      The restricted Maximum k-Satisfiability MAX- kSAT is an enhanced Boolean satisfiability counterpart that has attracted numerous amount of research. Genetic algorithm has been the prominent optimization heuristic algorithm ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja