• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 3, march 2022
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 3, march 2022
    • Ver ítem

    AWS PredSpot: Machine Learning for Predicting the Price of Spot Instances in AWS Cloud

    Autor: 
    Baldominos Gómez, Alejandro
    ;
    Saez, Yago
    ;
    Quintana, David
    ;
    Isasi, Pedro
    Fecha: 
    03/2022
    Palabra clave: 
    cloud computing; machine learning; prediction; prices; forecasting; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13137
    DOI: 
    https://doi.org/10.9781/ijimai.2022.02.003
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3103
    Open Access
    Resumen:
    Elastic Cloud Compute (EC2) is one of the most well-known services provided by Amazon for provisioning cloud computing resources, also known as instances. Besides the classical on-demand scheme, where users purchase compute capacity at a fixed cost, EC2 supports so-called spot instances, which are offered following a bidding scheme, where users can save up to 90% of the cost of the on-demand instance. EC2 spot instances can be a useful alternative for attaining an important reduction in infrastructure cost, but designing bidding policies can be a difficult task, since bidding under their cost will either prevent users from provisioning instances or losing those that they already own. Towards this extent, accurate forecasting of spot instance prices can be of an outstanding interest for designing working bidding policies. In this paper, we propose the use of different machine learning techniques to estimate the future price of EC2 spot instances. These include linear, ridge and lasso regressions, multilayer perceptrons, K-nearest neighbors, extra trees and random forests. The obtained performance varies significantly between instances types, and root mean squared errors ranges between values very close to zero up to values over 60 in some of the most expensive instances. Still, we can see that for most of the instances, forecasting performance is remarkably good, encouraging further research in this field of study.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai7_3_6.pdf
    Tamaño: 773.2Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 7, nº 3, march 2022

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    63
    213
    289
    136
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    75
    108
    103
    42

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Longitudinal Segmented Analysis of Internet Usage and Well-Being Among Older Adults 

      Cervantes, Alejandro; Quintana, David; Saez, Yago; Isasi, Pedro (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2024)
      The connection between digital literacy and the three core dimensions of psychological well-being is not yet well understood, and the evidence is controversial. We analyzed a sample of 2,314 individuals, aged 50 years and ...
    • DataCare: Big Data Analytics Solution for Intelligent Healthcare Management 

      Saez, Yago; Baldominos Gómez, Alejandro; Rada, Fernando (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2018)
      This paper presents DataCare, a solution for intelligent healthcare management. This product is able not only to retrieve and aggregate data from different key performance indicators in healthcare centers, but also to ...
    • Real-Time Prediction of Gamers Behavior Using Variable Order Markov and Big Data Technology: A Case of Study 

      Baldominos, Alejandro; Albacete, Esperanza; Marrero, Ignacio; Saez, Yago (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2016)
      This paper presents the results and conclusions found when predicting the behavior of gamers in commercial videogames datasets. In particular, it uses Variable-Order Markov (VOM) to build a probabilistic model that is ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja