• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 6, nº 7, september 2021
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 6, nº 7, september 2021
    • Ver ítem

    Pulmonary Nodule Classification in Lung Cancer from 3D Thoracic CT Scans Using fastai and MONAI

    Autor: 
    Kaliyugarasan, Satheshkumar
    ;
    Lundervold, Arvid
    ;
    Lundervold, Alexander Selvikvåg
    Fecha: 
    09/2021
    Palabra clave: 
    convolutional neural network (CNN); fastai; lung cancer; thoracic CT; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12999
    DOI: 
    https://doi.org/10.9781/ijimai.2021.05.002
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2944
    Open Access
    Resumen:
    We construct a convolutional neural network to classify pulmonary nodules as malignant or benign in the context of lung cancer. To construct and train our model, we use our novel extension of the fastai deep learning framework to 3D medical imaging tasks, combined with the MONAI deep learning library. We train and evaluate the model using a large, openly available data set of annotated thoracic CT scans. Our model achieves a nodule classification accuracy of 92.4% and a ROC AUC of 97% when compared to a “ground truth” based on multiple human raters subjective assessment of malignancy. We further evaluate our approach by predicting patient-level diagnoses of cancer, achieving a test set accuracy of 75%. This is higher than the 70% obtained by aggregating the human raters assessments. Class activation maps are applied to investigate the features used by our classifier, enabling a rudimentary level of explainability for what is otherwise close to “black box” predictions. As the classification of structures in chest CT scans is useful across a variety of diagnostic and prognostic tasks in radiology, our approach has broad applicability. As we aimed to construct a fully reproducible system that can be compared to new proposed methods and easily be adapted and extended, the full source code of our work is available at https://github.com/MMIV-ML/Lung-CT-fastai-2020.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai6_7_8.pdf
    Tamaño: 3.966Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 7, september 2021

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    31
    45
    71
    85
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    9
    74
    20
    19

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Reconstruction of High Resolution 3D Objects from Incomplete Images and 3D Information 

      Pacheco, Alexander; Bolívar, Holman; Pascual Espada, Jordán; González-Crespo, Rubén (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2014)
      To this day, digital object reconstruction is a quite complex area that requires many techniques and novel approaches, in which high-resolution 3D objects present one of the biggest challenges. There are mainly two different ...
    • La vulneración del derecho a la intimidad y a la protección de datos personales en la publicidad online 

      Gibelalde-Arrizabalaga, Alexander (20/07/2022)
      Navegar, consumir y publicar en páginas web, aplicaciones o redes sociales se han convertido en una actividad habitual para la población. Detrás están las grandes empresas digitales, que mediante el rastreo constante e ...
    • Reduced hippocampal volume in adolescents with psychotic experiences: A longitudinal population-based study 

      Calvo, Ana ; Roddy, Darren William; Coughlan, Helen; Kelleher, Ian; Healy, Colm; Harley, Michelle E.; Clarke, Mary; Leemans, Alexander; Frodl, Thomas; O'Hanlon, Erik; Cannon, Mary (PLoS ONE, 06/2020)
      Aims Smaller hippocampal volumes are among the most consistently reported neuroimaging findings in schizophrenia. However, little is known about hippocampal volumes in people who report psychotic experiences. This study ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja