Mostrar el registro sencillo del ítem

dc.contributor.authorSrivastava, Varun
dc.contributor.authorGupta, Shilp
dc.contributor.authorChaudhary, Gopal
dc.contributor.authorBalodi, Arun
dc.contributor.authorKhari, Manju
dc.contributor.authorGarcía-Díaz, Vicente
dc.date2021-09
dc.date.accessioned2022-05-03T09:07:16Z
dc.date.available2022-05-03T09:07:16Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/12994
dc.description.abstractContent Based Image Retrieval (CBIR) techniques based on texture have gained a lot of popularity in recent times. In the proposed work, a feature vector is obtained by concatenation of features extracted from local mesh peak valley edge pattern (LMePVEP) technique; a dynamic threshold based local mesh ternary pattern technique and texture of the image in five different directions. The concatenated feature vector is then used to classify images of two datasets viz. Emphysema dataset and Early Lung Cancer Action Program (ELCAP) lung database. The proposed framework has improved the accuracy by 12.56%, 9.71% and 7.01% in average for data set 1 and 9.37%, 8.99% and 7.63% in average for dataset 2 over three popular algorithms used for image retrieval.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 6, nº 7
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/2830es_ES
dc.rightsopenAccesses_ES
dc.subjectimage classificationes_ES
dc.subjectlocal mesh Peak valley edge patternses_ES
dc.subjectpatternses_ES
dc.subjectinformation retrievales_ES
dc.subjectIJIMAIes_ES
dc.titleAn Enhanced Texture-Based Feature Extraction Approach for Classification of Biomedical Images of CT-Scan of Lungses_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttps://doi.org/10.9781/ijimai.2020.11.003


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem