• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 6, nº 6, june 2021
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 6, nº 6, june 2021
    • Ver ítem

    COVID-19 Mortality Risk Prediction Using X-Ray Images

    Autor: 
    Prada, J.
    ;
    Gala, Y.
    ;
    Sierra, A. L.
    Fecha: 
    06/2021
    Palabra clave: 
    convolutional neural network (CNN); coronavirus COVID-19; deep learning; machine learning; medical images; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12979
    DOI: 
    https://doi.org/10.9781/ijimai.2021.04.001
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2926
    Open Access
    Resumen:
    The pandemic caused by coronavirus COVID-19 has already had a massive impact in our societies in terms of health, economy, and social distress. One of the most common symptoms caused by COVID-19 are lung problems like pneumonia, which can be detected using X-ray images. On the other hand, the popularity of Machine Learning models has grown exponentially in recent years and Deep Learning techniques have become the state-of-the-art for image classification tasks and is widely used in the healthcare sector nowadays as support for clinical decisions. This research aims to build a prediction model based on Machine Learning, including Deep Learning, techniques to predict the mortality risk of a particular patient given an X-ray and some basic demographic data. Keeping this in mind, this paper has three goals. First, we use Deep Learning models to predict the mortality risk of a patient based on this patient X-ray images. For this purpose, we apply Convolutional Neural Networks as well as Transfer Learning techniques to mitigate the effect of the reduced amount of COVID19 data available. Second, we propose to combine the prediction of this Convolutional Neural Network with other patient data, like gender and age, as input features of a final Machine Learning model, that will act as second and final layer. This second model layer will aim to improve the goodness of fit and prediction power of our first layer. Finally, and in accordance with the principle of reproducible research, the data used for the experiments is publicly available and we make the implementations developed easily accessible via public repositories. Experiments over a real dataset of COVID-19 patients yield high AUROC values and show our two-layer framework to obtain better results than a single Convolutional Neural Network (CNN) model, achieving close to perfect classification.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_6_6_1.pdf
    Tamaño: 917.4Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 6, june 2021

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    59
    97
    120
    103
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    42
    36
    48
    29

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Neurophysics assessment of the muscle bioenergy generated by transcranial magnetic stimulation 

      Leon-Sarmiento, Fidias E.; González-Castaño, Alexander ; Rizzo-Sierra, Carlos V.; Aceros, Juan; León-Ariza, Daniel S.; León-Ariza, Juan S.; Prada, Diddier G.; Bara-Jiménez, William; Wang, Zeng Y. (Research, 2019)
      The content of the rectified motor evoked potential (MEP) induced by transcranial magnetic stimulation (TMS) has ambiguously been assessed without the precision that energy calculation deserves. This fact has misled data ...
    • Análisis comparado de la regulación de Gases de Efecto Invernadero en el Sector Aéreo en España y Colombia 

      Prada-Prada, Héctor Ángel (14/09/2023)
      En la urgencia por abordar el cambio climático, la regulación de las emisiones de Gases de Efecto Invernadero «GEI» en el sector aéreo se ha convertido en un asunto de gran relevancia. La presente investigación realiza ...
    • Comentarios sobre riesgos psicosociales en el trabajo: una aproximación evaluativa 

      Fernández-Prada, María; González-Cabrera, Joaquín ; Iribar-Ibabe, Concepción; Peinado, José M. (Revista Peruana de Medicina Experimental y Salud Pública, 01/2013)
      Sr. Editor. A propósito del artículo publicado en su revista en el número 2 del año 2012, titulado “Riesgos psicosociales en el trabajo y salud ocupacional” (1) consideramos oportuno, dada su relevancia, contribuir ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja