COVID-19 Mortality Risk Prediction Using X-Ray Images
Autor:
Prada, J.
; Gala, Y.
; Sierra, A. L.
Fecha:
06/2021Palabra clave:
Revista / editorial:
International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)Tipo de Ítem:
articleDirección web:
https://www.ijimai.org/journal/bibcite/reference/2926Resumen:
The pandemic caused by coronavirus COVID-19 has already had a massive impact in our societies in terms of health, economy, and social distress. One of the most common symptoms caused by COVID-19 are lung problems like pneumonia, which can be detected using X-ray images. On the other hand, the popularity of Machine Learning models has grown exponentially in recent years and Deep Learning techniques have become the state-of-the-art for image classification tasks and is widely used in the healthcare sector nowadays as support for clinical decisions. This research aims to build a prediction model based on Machine Learning, including Deep Learning, techniques to predict the mortality risk of a particular patient given an X-ray and some basic demographic data. Keeping this in mind, this paper has three goals. First, we use Deep Learning models to predict the mortality risk of a patient based on this patient X-ray images. For this purpose, we apply Convolutional Neural Networks as well as Transfer Learning techniques to mitigate the effect of the reduced amount of COVID19 data available. Second, we propose to combine the prediction of this Convolutional Neural Network with other patient data, like gender and age, as input features of a final Machine Learning model, that will act as second and final layer. This second model layer will aim to improve the goodness of fit and prediction power of our first layer. Finally, and in accordance with the principle of reproducible research, the data used for the experiments is publicly available and we make the implementations developed easily accessible via public repositories. Experiments over a real dataset of COVID-19 patients yield high AUROC values and show our two-layer framework to obtain better results than a single Convolutional Neural Network (CNN) model, achieving close to perfect classification.
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
2025 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
59 |
97 |
120 |
1 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
42 |
36 |
48 |
1 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Neurophysics assessment of the muscle bioenergy generated by transcranial magnetic stimulation
Leon-Sarmiento, Fidias E.; González-Castaño, Alexander ; Rizzo-Sierra, Carlos V.; Aceros, Juan; León-Ariza, Daniel S.; León-Ariza, Juan S.; Prada, Diddier G.; Bara-Jiménez, William; Wang, Zeng Y. (Research, 2019)The content of the rectified motor evoked potential (MEP) induced by transcranial magnetic stimulation (TMS) has ambiguously been assessed without the precision that energy calculation deserves. This fact has misled data ... -
Análisis comparado de la regulación de Gases de Efecto Invernadero en el Sector Aéreo en España y Colombia
Prada-Prada, Héctor Ángel (14/09/2023)En la urgencia por abordar el cambio climático, la regulación de las emisiones de Gases de Efecto Invernadero «GEI» en el sector aéreo se ha convertido en un asunto de gran relevancia. La presente investigación realiza ... -
Comentarios sobre riesgos psicosociales en el trabajo: una aproximación evaluativa
Fernández-Prada, María; González-Cabrera, Joaquín ; Iribar-Ibabe, Concepción; Peinado, José M. (Revista Peruana de Medicina Experimental y Salud Pública, 01/2013)Sr. Editor. A propósito del artículo publicado en su revista en el número 2 del año 2012, titulado “Riesgos psicosociales en el trabajo y salud ocupacional” (1) consideramos oportuno, dada su relevancia, contribuir ...