Motivic Pattern Classification of Music Audio Signals Combining Residual and LSTM Networks
Autor:
Arronte Alvarez, Aitor
; Gómez, Francisco
Fecha:
06/2021Palabra clave:
Revista / editorial:
International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)Tipo de Ítem:
articleDirección web:
https://www.ijimai.org/journal/bibcite/reference/2878Resumen:
Motivic pattern classification from music audio recordings is a challenging task. More so in the case of a cappella flamenco cantes, characterized by complex melodic variations, pitch instability, timbre changes, extreme vibrato oscillations, microtonal ornamentations, and noisy conditions of the recordings. Convolutional Neural Networks (CNN) have proven to be very effective algorithms in image classification. Recent work in large-scale audio classification has shown that CNN architectures, originally developed for image problems, can be applied successfully to audio event recognition and classification with little or no modifications to the networks. In this paper, CNN architectures are tested in a more nuanced problem: flamenco cantes intra-style classification using small motivic patterns. A new architecture is proposed that uses the advantages of residual CNN as feature extractors, and a bidirectional LSTM layer to exploit the sequential nature of musical audio data. We present a full end-to-end pipeline for audio music classification that includes a sequential pattern mining technique and a contour simplification method to extract relevant motifs from audio recordings. Mel-spectrograms of the extracted motifs are then used as the input for the different architectures tested. We investigate the usefulness of motivic patterns for the automatic classification of music recordings and the effect of the length of the audio and corpus size on the overall classification accuracy. Results show a relative accuracy improvement of up to 20.4% when CNN architectures are trained using acoustic representations from motivic patterns.
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
73 |
100 |
144 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
34 |
55 |
69 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Rhetorical Pattern Finding
Gómez, Francisco; Tizón Díaz, Manuel; Arronte Alvarez, Aitor; Padilla, Victor (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2023)In this paper, we research rhetorical patterns from a musicological and computational standpoint. First, a theoretical examination of what constitutes a rhetorical pattern is conducted. Out of that examination, which ... -
I Congreso Español de Videojuegos 2022
González Calero, Pedro Antonio; Gómez Martín, Marco Antonio; Gómez Martín, Pedro Pablo; Gutiérrez Manjón, Sergio; Gutiérrez Sánchez, Pablo; Peinado, Federico; Sánchez-Ruiz Granados, Antonio; Barbancho, Isabel; Blanco Bueno, Carlos; Botella Nicolás, Ana María; Chover, Miguel; Díaz Álvarez, Josefa; Echeverría, Jorge; Fernández Leiva, Antonio J.; Fernández Ruiz, Marta; Gallego-Durán, Francisco; García Sánchez, Pablo; Gutiérrez Vela, Francisco L; Lara-Cabrera, Raúl; León, Carlos; Moreno, Jorge L.; Lozano Muñoz, Alejandro; Mayor, Jesús; Medina Medina, Nuria; Mejías-Climent, Laura; Mora, Antonio M; Munarriz, Jaime; Patow, Gustavo A.; Sagredo-Olivenza, Ismael; Salinas, María-José; Sanchez I. Peris, Francesc Josep; Sánchez-Ruiz, Antonio A; Shliakhovchuk, Elena; Tejada, Jesus (CEUR Workshop Proceedings, 2022){Resumen no disponible] -
Early-Onset Dementia Associated with a Heterozygous, Nonsense, and de novo Variant in the MBD5 Gene
González-Ortega, Guillermo; Llamas-Velasco, Sara; Arteche-López, Ana; Quesada Espinosa, Juan Francisco; Puertas-Martín, Verónica ; Gómez-Grande, Adolfo; López-Álvarez, Jorge; Saiz Díaz, Rosa Ana; Lezana-Rosales, José Miguel; Villarejo-Galende, Alberto; González de la Aleja, Jesús (IOS Press BV, 2021)The haploinsufficiency of the methyl-binding domain protein 5 (MBD5) gene has been identified as the determinant cause of the neuropsychiatric disorders grouped under the name MBD5-neurodevelopment disorders (MAND). MAND ...