• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 6, nº 6, june 2021
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 6, nº 6, june 2021
    • Ver ítem

    NSL-BP: A Meta Classifier Model Based Prediction of Amazon Product Reviews

    Autor: 
    Kumar, Pravin
    ;
    Dayal, Mohit
    ;
    Khari, Manju
    ;
    Fenza, Giuseppe
    ;
    Gallo, Mariacristina
    Fecha: 
    06/2021
    Palabra clave: 
    logistic regression; machine learning; Naïve Bayes; metamodel; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12959
    DOI: 
    https://doi.org/10.9781/ijimai.2020.10.001
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2823
    Open Access
    Resumen:
    In machine learning, the product rating prediction based on the semantic analysis of the consumers' reviews is a relevant topic. Amazon is one of the most popular online retailers, with millions of customers purchasing and reviewing products. In the literature, many research projects work on the rating prediction of a given review. In this research project, we introduce a novel approach to enhance the accuracy of rating prediction by machine learning methods by processing the reviewed text. We trained our model by using many methods, so we propose a combined model to predict the ratings of products corresponding to a given review content. First, using k-means and LDA, we cluster the products and topics so that it will be easy to predict the ratings having the same kind of products and reviews together. We trained low, neutral, and high models based on clusters and topics of products. Then, by adopting a stacking ensemble model, we combine Naïve Bayes, Logistic Regression, and SVM to predict the ratings. We will combine these models into a two-level stack. We called this newly introduced model, NSL model, and compared the prediction performance with other methods at state of the art.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_6_6_10.pdf
    Tamaño: 1.829Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 6, june 2021

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    95
    157
    135
    139
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    30
    109
    78
    57

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Optimized test suites for automated testing using different optimization techniques 

      Khari, Manju; Kumar, Prabbat; Burgos, Daniel ; González-Crespo, Rubén (Soft Computing, 2017)
      Automated testing mitigates the risk of test maintenance failure, selects the optimized test suite, improves efficiency and hence reduces cost and time consumption. This paper is based on the development of an automated ...
    • Feature based video stabilization based on boosted HAAR Cascade and representative point matching algorithm 

      Raj, Rohit; Rajiv, Pooshkar; Kumar, Prabhat; Khari, Manju; Verdú, Elena ; González-Crespo, Rubén ; Manogarane, Gunasekaran (Image and Vision Computing, 09/2020)
      The success of handheld video capturing devices has further fueled the need of improved video stabilization. The videos often contain many foreground facial features like eyes, nose etc. These foreground features can be ...
    • Optimizing Fast Fourier Transform (FFT) Image Compression using Intelligent Water Drop (IWD) Algorithm 

      Kaur, Surinder; Chaudhary, Gopal; Dinesh Kumar, Javalkar; Pillai, Manu S.; Gupta, Yash; Khari, Manju; García-Díaz, Vicente; Parra Fuente, Javier (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2022)
      Digital image compression is the technique in digital image processing where special attention is provided in decreasing the number of bits required to represent a digital image. A wide range of techniques have been developed ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja