Mostrar el registro sencillo del ítem

dc.contributor.authorBoeschoten, Laura
dc.contributor.authorvan Kesteren, Erik-Jan
dc.contributor.authorBagheri, Ayoub
dc.contributor.authorOberski, Daniel L.
dc.date2021-03
dc.date.accessioned2022-04-21T09:51:33Z
dc.date.available2022-04-21T09:51:33Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/12889
dc.description.abstractRecently, an increasing amount of research has focused on methods to assess and account for fairness criteria when predicting ground truth targets in supervised learning. However, recent literature has shown that prediction unfairness can potentially arise due to measurement error when target labels are error prone. In this study we demonstrate that existing methods to assess and calibrate fairness criteria do not extend to the true target variable of interest, when an error-prone proxy target is used. As a solution to this problem, we suggest a framework that combines two existing fields of research: fair ML methods, such as those found in the counterfactual fairness literature and measurement models found in the statistical literature. Firstly, we discuss these approaches and how they can be combined to form our framework. We also show that, in a healthcare decision problem, a latent variable model to account for measurement error removes the unfairness detected previously.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 6, nº 5
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/2895es_ES
dc.rightsopenAccesses_ES
dc.subjectalgorithmic biases_ES
dc.subjectlatent variable modeles_ES
dc.subjecterror analysises_ES
dc.subjectfair machine learninges_ES
dc.subjectmeasurement invariancees_ES
dc.subjectIJIMAIes_ES
dc.titleAchieving Fair Inference Using Error-Prone Outcomeses_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttps://doi.org/10.9781/ijimai.2021.02.007


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem