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Abstract

Recently, an increasing amount of research has focused on methods to assess and account for fairness criteria 
when predicting ground truth targets in supervised learning. However, recent literature has shown that prediction 
unfairness can potentially arise due to measurement error when target labels are error prone. In this study we 
demonstrate that existing methods to assess and calibrate fairness criteria do not extend to the true target variable 
of interest, when an error-prone proxy target is used. As a solution to this problem, we suggest a framework that 
combines two existing fields of research: fair ML methods, such as those found in the counterfactual fairness 
literature and measurement models found in the statistical literature. Firstly, we discuss these approaches and how 
they can be combined to form our framework. We also show that, in a healthcare decision problem, a latent variable 
model to account for measurement error removes the unfairness detected previously.
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I. Introduction

Supervised learning is used to guide human decisions across a wide 
range of different fields. In sensitive areas such as healthcare or 

criminal justice, a key issue is that these decisions are equitable and 
fair. To this end, an active area of research investigates how fairness 
criteria can be incorporated into supervised learning [1]–[6]. This 
literature has focused on supervised learning for a single objective, 
assumed to be the target variable of interest.

However, focusing on fair inference for a single objective is not 
sufficient in many real-world applications. The motivating example 
for this paper is presented in [7]: a commercial health prediction 
algorithm, widely used by health insurance companies and affecting 
millions of patients, exhibits significant racial bias –at a given risk 
score, black patients are considerably sicker than white patients, as 
evidenced by signs of uncontrolled illnesses. The bias arises because 
the algorithm predicts healthcare costs rather than illness, but unequal 
access to care means that less money is spent caring for black patients 
than for white patients. Thus, substantial racial biases arise, despite 
healthcare cost appearing to be an effective proxy for health by 
some measures of predictive accuracy, and despite these predictions 
complying with conventional standards of fair inference on outcomes 
[8]. The situation presented in [7] is but one example of a more general 
common framework of using a proxy to measure outcomes which 
cannot be directly measured – another example would be predicting 
true criminal recidivism using only observed recidivism, which is an 
error-prone proxy [9]. In this paper, we suggest using an approach 
from the field of social science: to make use of multiple observable 
proxies to build a measurement model representing the unobserved 

(latent) variable of interest. We propose to integrate such an approach 
when developing prediction models. This issue cannot be ignored 
because fairness is generally conceptualised on a level more abstract 
than the proxy label [10]; for example, it is reasonable to require that 
fairness in a healthcare need prediction system should extend to a 
person’s true health status. However, it is challenging to measure a 
patient’s true health status, as such measures are typically impossible 
to observe directly. In social science, a common approach is to make 
use of multiple observable indicators to build a measurement model 
representing the unobserved (latent) variable of interest. We propose 
to integrate such an approach when developing prediction models.

This paper addresses the problem of prediction unfairness arising 
from measurement error. By considering the supervised learning 
problem at the level of a latent variable of interest, we reformulate the 
problem as one of adequate measurement modelling. In effect, instead 
of requiring perfect measurement to achieve fairness, we propose that 
researchers developing a prediction model to be used for decision-
making collect several independent, possibly error-prone, measures 
of the variable of interest (e.g. health).These measures act like error-
prone labels made by independent annotators, each containing some 
information about the true health status (similar to, e.g., [11],[12]). 
We then suggest to combine measurement models from the statistical 
literature with techniques from the literature on fair ML to assess 
and ameliorate the problem of unfair predictions in the face of 
measurement error.

Our contributions are as follows:

• We illustrate that existing methods to examine unfairness in error-
prone outcomes are insufficient;

• We suggest a framework, based on the existing measurement 
modelling literature, to investigate and ameliorate such issues;

• We perform an exemplary analysis to demonstrate the sug-gested 
approach. In an existing healthcare application, this demonstrates 
that replacing one proxy with another does not lead to parity, 
while our approach does.
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In Section II, we provide a summary of basic concepts in fairness. In 
Section III prior approaches with respect to fair inference are discussed. 
In Section IV, the failure of these approaches is discussed when making 
use of proxies, and the proposed framework is introduced based on 
existing measurement models. In Section V the proposed framework 
is then applied to the exemplary data set provided by [7].

II. Problem Definition

We consider probabilistic classification and regression prob-lems 
with a set of features X and true outcome Z. Among the features, there 
is a sensitive feature S ϵ X (e.g. race, gender), with respect to which 
discriminatory predictions are to be avoided. Furthermore, although 
the prediction problem is with respect to the true outcome Z – e.g. 
“health” or “crime” – this outcome is not directly observed; instead, we 
have observed a set of error-prone proxy variables Y. For example, in 
practice a proxy for “health”, Y ϵ Y, might be the costs of healthcare or 
the number of chronic conditions experienced by the patient, whereas, 
instead of “crime”, the number of arrests might be measured. Following 
[8], we represent the goal of the regression or classification problem as 
a query on the (generative) joint distribution p(Z, X), potentially after 
conditioning on a set of “fixed” covariates C, i.e. the (discriminative) 
conditional joint p(Z, X\C | C). Typically, this query will be the point 
prediction Ẑ:= E(Z | X).

Following standard social-scientific measurement theory [13], 
the fact that Y is a measurement proxy for Z is reflected by a causal 
model, in the sense of [14], [15], in which Z → Y, i.e., the true outcome 
is a common cause of all available proxy variables. Because Z is an 
unobserved latent variable, our causal model will be identifiable only 
through additional assumptions of conditional independence; we 
discuss these assumptions later. The key point to note here is that, 
generally,

E(Z | X) ≠ E(Y ϵ Y | X)  (1)

i. e. predictions using error-prone proxies as labels, Ŷ , will, of 
course, differ from the Ẑ that would have been obtained had the true 
labels been available.

III. Related Work

A large and growing literature on fairness of predictions for the 
error-free outcome Z exists, with divergent and sometimes mutually 
exclusive definitions of the notion of algorithmic fairness. An excellent 
overview of this literature can be found in [6], which identified 20 

separate definitions. Broadly, a distinction can be made between 
statistical metrics, distance-based measures, and causal reasoning [6].

Statistical metrics define fairness as the presence or absence 
of a (conditional) independence in the joint distribution p(Z, Ẑ, S). 
For example, take a classification problem in which the decision is 
taken as d := I(Z > τ), where I is the indicator function and τ is some 
threshold on the predicted score. Statistical parity (“group fairness”) is 
then defined as

p(d = 1 | S = s) = p(d = 1 | S = s')  (2)

for all s ≠ s', i.e., the decision should not depend on the sensitive 
attribute, whereas predictive parity is defined as

p(Z = 1 | d = 1, S = s) = p (Z = 1 | d = 1, S = s' ) (3)

for all s ≠ s'—i.e. the positive predictive value should not depend on 
the sensitive attribute. Further definitions include conditional statistical 
parity [2], overall accuracy equality [1], and well calibration [4].

Distance-based measures of fairness account for the non-sensitive 
predictors X\S, in addition to the observed and predicted outcomes 
and sensitive attribute. The well-known “fairness through awareness” 
framework [3] generalises several of the preceding notions, such as 
statistical parity, by defining fairness as “similar decisions for similar 
people”. Consider a population of potential applicants P, and consider 
any randomised output from the prediction algorithm, M(𝑥 ϵ P). 
Fairness is achieved whenever the distance among the decisions M 
made for two people is at least as small as the distance between these 
people, i.e. when

D (M(𝑥), M(𝑦)) ≤ 𝑑(𝑥, 𝑦) (4)

for any 𝑥, 𝑦 ϵ P . Here, D and 𝑑 are arbitrary metrics on the distance 
between outputs and people, respectively. Careful choice of these metrics 
can yield some of the above definitions as special cases. Since the fairness 
condition can be trivially achieved, for example by always outputting a 
constant regardless of the input, the prediction model should be trained 
by minimising a loss function under the above constraint.

Finally, in recent years, results from the causal modelling literature 
have been leveraged to define and achieve “counterfactual” fairness 
[5], [8]. In these definitions one first considers a causal model 
involving Y, X\S, and S such as Panel A of Fig. 1. This causal model then 
induces a counterfactual distribution 𝑝𝑑𝑜(𝑠)(Ẑ | X ), i.e. the distribution 
we would observe if S were set to the value s [14]. [5] then defined 
counterfactual fairness as

𝑝𝑑𝑜(𝑠)(Ẑ | X ) = 𝑝𝑑𝑜(𝑠')(Ẑ | X ) (5)
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Fig. 1. Graphical representation of causal relations between the sensitive feature (S), the predictors (X), and the error-prone outcome (Z) in the naive case (A), 
in the measurement error framework (B), and in the measurement error framework with differential item functioning on the Y1 proxy (C). The dotted arrow 
indicates the discriminatory causal pathway (as in [8]) which is blocked when performing fair inference, evaluating E[Z | X, S] to compute a risk score Ẑ.



Special Issue on Artificial Intelligence, Paving the Way to the Future

- 11 -

Note that this definition looks superficially similar to the definition 
of statistical parity (group fairness), but is distinct because it refers 
to an individual. This definition has as a disadvantage that any 
causal effect of the sensitive attribute on the prediction is deemed 
illegitimate. Based on the same framework, [8] suggested a more 
general definition: some causal pathways originating in S are denoted 
discriminatory, while others are not. Fairness is then achieved by 
performing inference on a distribution p*(Z, X), in which the “fair 
world” distribution p*(Z, X) is close in a Kullback-Leibler sense to the 
original p(Z, X), but all discriminatory pathways have been blocked 
(up to a tolerance) using standard causal inference techniques. Note 
that, if all causal pathways originating in S are deemed discriminatory 
and the tolerance set to zero, the counterfactual fairness criterion by 
[5] will be satisfied.

IV. Proposed Framework

A. Fair Inference in Error-prone Outcomes
The existing methods from Section III do not consider the target Z 

to be error-prone. However, in practice, the target feature Y ϵ Y in the 
data set is not a perfect representation of the true underlying outcome 
Z. There can be several sources for this imperfect representation. For 
example, the true underlying outcome of interest may not be directly 
measurable at all (i.e., Z ≠ Y for any possible Y). In this case, the 
outcome of interest will only partially explain any feature used as its 
proxy. For example, in using healthcare costs Y as a proxy for health Z, 
the observed value will in part be determined by other factors besides 
Z, such as the location of residence of the patient. Then, even if the 
outcome of interest were “true healthcare costs” – thus in principle 
measurable – the observed feature will in practice still not be an 
infallible proxy, because health records are never perfect observations 
and always contain some form of noise [16]. Together, such sources of 
noise in the observation process are termed “measurement error”, and 
any outcome Z containing measurement error can be considered latent 
[17] and modelled as such.

Crucially, the presence of measurement error may result in unfair 
inferences for the error-prone outcome, even after applying the 
procedures presented in Section III to account for unfairness. This is 
shown in a compelling example by [7], who concluded that commercial 
algorithms used by insurance companies for patient referral contain 
a fundamental racial bias. In the algorithm under consideration, 
healthcare costs Y ϵ Y are used as a proxy for health Z. [7] illustrated 
that although there is no bias in healthcare costs, there is strong racial 
bias in other proxies of health such as whether patients have chronic 
conditions. Specifically, in order to be referred to a primary care 
physician, the true underlying health status Z of black patients was 
worse than that of white patients.

[7] concluded that fair inference requires selecting a better proxy 
for health as the outcome variable Z. Indeed, their analyses were 
possible precisely due to the availability of different proxies of health, 
such as the number of chronic conditions. However, we note that 
solving racial bias in a new proxy does not guarantee the absence 
of racial bias in other proxies indicating other aspects of health. 
Instead, here we suggest incorporating several proxies, or indicators 
Y in a measurement model for the unobserved, error-prone outcome 
Z [18]. In the next section, we introduce the existing literature on 
measurement models and its approach to fair inference.

B. Fair inference in Measurement Models
When outcomes are thought to be error-prone, an existing 

literature suggests the use of measurement models [16], [19]. At their 
core, measurement models describe the causal relationship between 
observed scores Y and unobserved “true scores” Z as Z → Y. A 

measurement model adequately represents the empirical conditions 
of measurement if conditional independence can be assumed [20]. 
More specifically, measurement models assume that Y1 and Y2 are 
conditionally independent given Z, i.e.,

𝑝 (Y1, Y2 | Z ) = 𝑝 (Y1 | Z ) 𝑝 (Y2 | Z ) (6)

A plethora of variations of measurement models assuming 
conditional independence have been developed, such as latent class 
models [21], item response models [22], mixture models [23], factor 
models [24], structural equation models [25], and generalised latent 
variable models [26].

Measurement models are suggested here as a convenient way to 
account for a latent variable’s relationship to sensitive features. The 
measurement error of a proxy variable (e.g. Y1) is then assumed to 
differ over different groups of S. To account for group differences 
in proxy variables, a large body of literature is available where this 
issue is known under different labels. Generally, these approaches are 
applied within the structural equation modelling (SEM) framework 
[27], as SEM explicitly separates the measurement model (Z → Y) 
from the structural model (X → Z). Approaches for investigating how 
features S influence Z are investigating item bias [28], Differential 
Item Functioning (DIF) [29] and measurement invariance [30]. For an 
extensive overview of the different approaches and their benefits and 
drawbacks, we refer to [30]–[33].

C. Proposed Method for Fair Inference on Latent Variables
We propose our framework for fair inference on outcomes which are 

measured only through error-prone proxies in a step-by-step manner. 
To clarify the framework and make it more comparable to earlier 
work, we use the running example of health risk score prediction from 
[7]. Their healthcare data set contains several clinical features X at 
time point t ‒ 1 (e.g., age, gender, care utilisation, biomarker values 
and comorbidities) which are used to predict healthcare cost Z at time 
t. In addition, the patient’s race is the sensitive feature S, coded as  
S = b for black patients and S = w for white patients. The relations 
between these features are shown in panel A of Fig. 1.

Based on X, the expectation of a persons’ healthcare cost is used as 
a risk score Ẑ := E[Z | X, S]. The risk score is used to make a decision D 
to refer a patient to their primary care physician to consider program 
enrolment. More specifically 𝑑 = 1 if Z is above the 55th percentile. 
In this setting, attributes X can be legitimately controlled. However, 
conditional on X both groups in S should have equal probability of 
being referred:

𝑝 (𝑑 = 1 | X = 𝑥, S = b) = 𝑝 (𝑑 = 1 | X = 𝑥, S = 𝑤)  (7)

As mentioned in Section A and shown by [7], this procedure leads 
to bias in other proxies of Z, such as a patient’s number of chronic 
conditions.

Our proposed framework is a SEM implementation of the second 
and third panels of Fig. 1. The general structure of the model is that of 
a Multiple Indicator, Multiple Causes (MIMIC) model.

In SEM, a latent variable (a hypothetical construct that is not 
directly observed) can be related to observable variables, such as 
indicators and causes of the latent variable, through sets of regression 
equations [34] and where parameters are typically estimated by means 
of maximum-likelihood [35]. A MIMIC model is a particular structure 
of a SEM model where a latent variable is simultaneously related to 
both observed indicator and cause variables [36]. In our model, the 
outcome variable Z (e.g., health) has multiple proxy indicators (e.g., 
chronic conditions, healthcare costs, hypertension), and the X features 
predict Z directly (thus the proxies only indirectly). A graphical 
representation of the MIMIC SEM model is shown in Fig. 2. This 
implementation imposes additional assumptions on the general causal 
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graphs, most notably linear relationships between the variables and 
multivariate Gaussian residuals.

We implement our proposed correction procedure on the outcome 
variable Z in an existing fair inference approach [8] by means of the 
following steps:

1. The data-set is split in half to obtain a training set and a test set.

2. Regression parameters (X, S → Z) are estimated on the training set 
using the MIMIC model.

3. The path from race to health is blocked by setting S = b for all rows 
in the test set.

4. Predictions are generated for the adjusted test set by using the 
parameter estimates obtained in step 2.

To summarise, during estimation of the regression parameters  
(X → Z), health is conditioned on race, but during prediction the path 
from race to health is blocked by setting S = b. Following the notation 
of [8], this yields a “fair world” distribution p*(Z, X). The expectation  
Ẑ = E[Z | X, S] is then computed from this distribution, meaning for 
two participants who differ only on S but not on X, the risk score Ẑ will 
be exactly the same. Because in SEM the latent outcome Z is modelled 
as a linear combination of the different proxies, the risk score is a 
reflection of the underlying health rather than only health cost.

V. Experiments

In this section, we evaluate the proposed framework on an 
application of the procedures discussed in this paper. We first prepare 
the data set as provided by [7] to create a basic risk score based on 
healthcare cost similar to the commercial risk score reported in their 
paper. Then, we illustrate our argument from Section A: we perform 
fair inference on the proxy measure for health (healthcare cost) to 
show that this does not solve the issue of unfairness in other proxy 
measures. This is a reproduction of the results shown by [7]. Next, 
we use the SEM framework from Section C to show how including a 
formal measurement model for Z – as in panel B of Fig. 1 – can largely 
solve the issue of unfairness in the proxies. Last, we show how existing 
differential item functioning (DIF) methods in the SEM framework – 
panel C of Fig. 1 – can aid in interpreting the extent to which proxy 
measures contain unfairness. Fully reproducible R code for this section 
is available as supplementary material to this paper at the following 
DOI: 10.5281/zenodo.3708150.

A. Data Preparation and Feature Selection
Log-transformations are applied to highly skewed variables at time-

point t, such as costs, to meet the assumption of normally distributed 
residuals in regression procedures. As an additional normalisation 
step, the predictors at time-point t ‒ 1 are re-scaled to homogenise 
their levels of variance. The data set is then split into a training and a 
test set. In this section, estimation is always done on the training set 
and inference is done on the test set.

To simplify our proposed framework for the purpose of this 
application, we select a subset of features at time-point t ‒ 1 for 
prediction of the target of interest at time point t, health. We want 
our procedure to be comparable to the commercial algorithm which 
produces the risk scores described in [7]. If the features we select 
are the same features used by the commercial algorithm, then our 
procedure would yield very similar results upon generating a risk 
score. Unfortunately, the predicted risk scores used by [7] cannot be 
replicated exactly using the provided data set.

To select the subset of predictor features for further use in our 
procedure, we performed a LASSO regression [37] where all available 
features at time-point t ‒ 1 are used as predictor variables, and the 
provided algorithmic risk score at time-point t is used as a target. 
Following the guidelines by [38], we used cross-validation to select 
the optimal λ penalty value. This yields a set of non-zero predictors 
which predict the algorithmic risk score well.

Superman’s rank correlation between the commercial and the 
replicated risk score is high ρ = .82, indicating that the commercial and 
replicated risk scores perform similarly in the rank-based cutoff applied 
in [7]. The predictors selected in this model are used as predictors X in 
the structural equation models of the following sections.

B. Fair Inference on Cost as a Proxy of Health
Pane A of Fig. 1 illustrates conditional statistical parity as defined 

by [6]. To perform standard statistical parity correction, the outcome Z 
is conditioned on sensitive feature S when estimating the coefficients 
of the prediction model (X → Z), and during prediction all subjects are 
assumed to have the same level of S, e.g., S = b, such that

𝑝 (Z = 𝑧 | X = 𝑥, S = b) = 𝑝 (Z = 𝑧 | X = 𝑥, S = 𝑤) (8)

However, in the current situation we do not measure Z directly, 
but only a proxy Y ϵ Y. Standard parity correction for this proxy does 
not necessarily mean the parity is achieved for other proxies [7]. The 

EHRt-1

Race

Healtht

# chronic
conditionst

Blood
pressure t

Diabetes
severityt

Anemia
severityt

Renal
failuret

Healthcare
costst

Avoidable
costs t

Cholesterolt

Fig. 2. Structural equation model for the proposed framework on the healthcare data set. For clarity, residual variances of the endogenous variables are not drawn 
in the diagram. EHR stands for Electronic Health Record. For more information on the variables used in the model, see [7].
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reason for this is explained in Fig. 3. Pane A illustrates that statistical 
parity is present when plotting the risk score against healthcare costs, 
meaning that for a given risk score, the healthcare costs for both races 
are approximately equal. However, Pane B illustrates that when the 
number of chronic conditions are plotted against healthcare costs, 
there are differences between the two race groups, meaning that for 
a given amount of chronic conditions, white patients cost more than 
black patients.

As a result, standard statistical parity correction on healthcare cost 
does not remove the disparity in chronic conditions. This becomes 
visible when comparing Pane B of Fig. 3 with Pane A of Fig. 4. In 
addition, from Pane B of Fig. 4 it can be seen that the results improve 
compared to not including race at all (Pane A of Fig. 4), yet race 
differences remain for the chronic conditions proxy. As a consequence, 
individuals belonging to S = b will still have a lower health status 
when being selected for intervention.

C. Fair Inference on Latent Health
A cause for the fact that conditional statistical parity is not met 

when following Pane A of Fig. 1 can be that Ẑ is a (bad) proxy. Instead 

of using one bad proxy, it is better to use multiple (bad) proxies as 
indicators of an unobserved latent variable measuring ‘true health’. 
How such a model can be specified is illustrated in Pane B of Fig. 
1. Such a model can be applied in practice by following the steps in 
the framework described in Section C. Similarly to [6], the sensitive 
feature is excluded during prediction.

Fig. 4 shows the effect of including a measurement model in 
constructing risk scores. The figure illustrates that using a measurement 
model with multiple imperfect measurements of health as indicators 
for ‘true health’ substantially improves conditional statistical parity, 
when compared to either the uncorrected risk score on a proxy, or a 
parity-corrected risk score on the proxy. Additionally, Table I shows a 
numerical summary which corroborates this finding. Here, we created 
a prediction model for the number of chronic conditions using both 
risk score and race. The parameter for race then indicates whether 
a race difference exists for health, conditional on the risk score. This 
conditional dependence becomes close to 0 when using the latent 
risk score (95% CI = [´0.113, 0.012]). Thus, by using this measurement 
model, the problem that individuals belonging to S = b had a lower 
health status when being selected for intervention is minimised.

(a) (b) (c)

Fig. 4. Effect of including a measurement model in constructing risk scores. The first panel shows the uncorrected risk score based on healthcare cost, the middle 
panel shows the same risk score but corrected for the sensitive feature, and the third panel shows the corrected risk score based on the latent health outcome 
using a measurement model.

(a) (b)

Fig. 3. Although the risk score displays statistical parity on healthcare costs (no differences between the lines in panel A), these costs conditional on health (as 
measured by chronic illness) depends on race (panel B). This causes statistical disparity for the risk score on the level of health (Fig. 4, panel B). Figure replicated 
from [7].
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TABLE I. Estimated Conditional Parity on the Number of Chronic 
Conditions for Different Risk Scores. β Parameters Are Linear Re-
gression Parameters, Indicating the Deviation of White Patients 
From Black Patients in the Number of Chronic Conditions, Condi-

tional on Risk Score. For Example, a Value of -0.963 Means that White 
Patients Have on Average a 0.963 Fewer Chronic Conditions for the 

Same Risk Score

Risk score β 2.5% 97.5%

Replicated -0.963 -1.063 -0.864

Parity-corrected -0.577 -0.677 -0.478

Latent -0.051 -0.113 0.012

D. Investigating Unfairness in Proxies
When using a measurement model with multiple imperfect 

measurements of health as indicators of ‘true health’, differences in 
measurement error over the different groups of the sensitive feature 
can still be present. Panel C of Fig. 1 illustrates how differences over 
the sensitive feature groups in the error prone indicator variables can 
be incorporated directly when estimating ‘true health’. For example, 
differences in measurement error of healthcare cost can be present for 
the different groups of race.

Including a DIF parameter δ on the healthcare cost variable 
yields a model which fits significantly better on the test set than 
the model without the DIF parameter (χ2(1) = 50,  p < 0.001). 
The value of the DIF parameter on cost is estimated as δ = 0.198  
(95% CI = [0.172, 0.225]). This means that for the same level of health, 
the log-healthcare costs of the white race class in this data set is 
estimated to be 0.198 higher. This means that the cost of healthcare 
for white patients is (e0.198 ‒ 1) · 100% = 21.9% higher than that for 
black patients, given an equal level of health as measured by the 
measurement model (95% CI = [18.7, 25.2]).

Applying the same procedure to the other indicators leads to 
estimates of DIF for those indicators. The results are shown in Table 
II. This table shows that some proxies have stronger DIF than others, 
meaning some proxies are more unfair than other proxies. Notable, the 
avoidable healthcare cost and the renal failure items have low levels 
of DIF for race, whereas the healthcare cost and the number of active 
chronic conditions have strong DIF.

TABLE II. Estimated Differential Item Functioning Parameters for 
Each Indicator (Proxy) of Health. δ Parameters Should Be Interpreted 
as the Mean Deviation of the Black Patients Compared to the White 

Patients Given Health.

Indicator δ 2.5% 97.5%

No. active chronic conditions 0.453 0.364 0.541

Mean blood pressure -0.262 -0.320 -0.204

Diabetes severity (HbA1c) -0.343 -0.391 -0.296 

Anemia severity (hematocrit) 0.250 0.231 0.268

Renal failure (creatinine) -0.019 -0.025 -0.014

Cholesterol (mean LDL) -0.235 -0.317 -0.153 

Healthcare cost (log) 0.198 0.172 0.225

Avoidable healthcare cost (log) -0.052 -0.096 -0.008

VI. Conclusion

In this paper, we have argued that when measurement error is at 
play, performing fair inference on a proxy measure of the outcome 
is insufficient to achieve a fair inference on the true outcome. This 

manifests itself, as shown in [7], as unfairness in other proxy measures 
of the outcome of interest. Alternatively, in this study we proposed to 
make use of existing measurement models containing multiple error-
prone proxies for the outcome of interest. In addition, fair inference 
can be accounted for in each of these proxies simultaneously if needed 
by allowing for measurement error in proxies to differ over groups 
defined by differing values of a sensitive feature. We provided a 
framework to perform these estimations and applied this framework 
to the exemplary data set provided by [7]. Here, it was concluded that 
fair inference was accounted for when multiple proxies were used in a 
measurement model instead of a single proxy. Additionally accounting 
for differences in measurement error over race groups was not 
needed to further improve fairness in predicted risk scores, although 
substantive group differences were found for some proxies.
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