• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 2, june 2020
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 2, june 2020
    • Ver ítem

    An Experimental Study on Microarray Expression Data from Plants under Salt Stress by using Clustering Methods

    Autor: 
    Fyad, Houda
    ;
    Barigou, Fatiha
    ;
    Bouamrane, Karim
    Fecha: 
    06/2020
    Palabra clave: 
    clustering; clustering quality indexes; gene expression; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12752
    DOI: 
    https://doi.org/10.9781/ijimai.2020.05.004
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2770
    Open Access
    Resumen:
    Current Genome-wide advancements in Gene chips technology provide in the “Omics (genomics, proteomics and transcriptomics) research”, an opportunity to analyze the expression levels of thousand of genes across multiple experiments. In this regard, many machine learning approaches were proposed to deal with this deluge of information. Clustering methods are one of these approaches. Their process consists of grouping data (gene profiles) into homogeneous clusters using distance measurements. Various clustering techniques are applied, but there is no consensus for the best one. In this context, a comparison of seven clustering algorithms was performed and tested against the gene expression datasets of three model plants under salt stress. These techniques are evaluated by internal and relative validity measures. It appears that the AGNES algorithm is the best one for internal validity measures for the three plant datasets. Also, K-Means profiles a trend for relative validity measures for these datasets.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_6_2_5.pdf
    Tamaño: 425.8Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 2, june 2020

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    35
    55
    124
    47
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    35
    46
    66
    23

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • La innovación tecnológica. ¿Cómo cambian las conductas? 

      Gherab Martín, Karim J (Nueva Revista, 09/2012)
      No hay duda de que el futuro pasa inexorablemente por la innovación sobre todo si se tiene en cuenta la importancia que están adquiriendo en los últimos tiempos las nuevas tecnologías. Pero la innovación no ha de referirse ...
    • Solving the Weighted Constraint Satisfaction Problems Via the Neural Network Approach 

      Ettaouil, Mohamed; Haddouch, Khalid; Elmoutaoukil, Karim (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2016)
      A wide variety of real world optimization problems can be modelled as Weighted Constraint Satisfaction Problems (WCSPs). In this paper, we model this problem in terms of in original 0-1 quadratic programming subject to ...
    • The impact of collaborative ePortfolios on academic learning in a university setting 

      Feridouni-Solimani, Anita; Ahmed-Mohamed, Karim (Journal of Technology and Science Education (JOTSE), 2024)
      This study is focused on promoting self-reflection and self-regulation of learning through the use of digital tools to improve the academic performance of university students. Specifically, the main objective is to evaluate ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja