Mostrar el registro sencillo del ítem

dc.contributor.authorHarish, B S
dc.contributor.authorNagadarshan, N
dc.contributor.authorManju, N
dc.date2020-03
dc.date.accessioned2022-03-21T11:33:54Z
dc.date.available2022-03-21T11:33:54Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/12696
dc.description.abstractRecently, the efficient internet traffic classification has gained attention in order to improve service quality in IP networks. But the problem with the existing solutions is to handle the imbalanced dataset which has high uneven distribution of flows between the classes. In this paper, we propose a multilayer feedforward neural network architecture to handle the high imbalanced dataset. In the proposed model, we used a variation of multilayer perceptron with 4 hidden layers (called as mountain mirror networks) which does the feature transformation effectively. To check the efficacy of the proposed model, we used Cambridge dataset which consists of 248 features spread across 10 classes. Experimentation is carried out for two variants of the same dataset which is a standard one and a derived subset. The proposed model achieved an accuracy of 99.08% for highly imbalanced dataset (standard).es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 6, nº 1
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/2745es_ES
dc.rightsopenAccesses_ES
dc.subjectclassificationes_ES
dc.subjectneural networkes_ES
dc.subjectfeature transformationes_ES
dc.subjectinternet traffices_ES
dc.subjectIJIMAIes_ES
dc.titleMultilayer Feedforward Neural Network for Internet Traffic Classificationes_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttps://doi.org/10.9781/ijimai.2019.11.002


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem