• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 1, march 2020
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 1, march 2020
    • Ver ítem

    Soft Computing Modelling of Urban Evolution: Tehran Metropolis

    Autor: 
    Borhani, Mostafa
    ;
    Ghasemloo, Nima
    Fecha: 
    03/2020
    Palabra clave: 
    geographic information system; artificial neural networks; urban computing; fuzzy logic; soft computing; spatial information systems; IJIMAI
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12688
    DOI: 
    https://doi.org/10.9781/ijimai.2019.03.001
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2710
    Open Access
    Resumen:
    Exploring computational intelligence, geographic information systems and statistical information, a creative and innovative model for urban evolution is presented in this paper. The proposed model employs fuzzy logic and artificial neural network as forecasting tools for describing the urban growth. This dynamic urban evolution model considers the spatial data of population, as well as its time changes and the building usage patterns. For clustering the spatial features, fuzzy algorithms were implemented to represent different levels of urban growth and development. Then, these fuzzy clusters were modeled by the multi-layer neural networks to estimate the urban growth. Based on this novel intelligent model, the current state of development of Tehran’s population and the future of this urban evolution were evaluated by empirical data and the achieved outcomes were detailed in qualitative charts. The input data-set includes four censuses with five-year intervals. Tehran's demographic evolution model forecasts the next five years with an overall accuracy of 81% and Cohen's kappa coefficient up to 74% beside the qualitative charts. These performance indicators are higher than the previous advanced models. The primary objective of this proposed model is to aid planners and decision makers to predict the development trend of urban population.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai20206_1_1_pdf_16471.pdf
    Tamaño: 739.5Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 1, march 2020

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    49
    0
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    29
    2

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja