• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2019
    • vol. 5, nº 5, june 2019
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2019
    • vol. 5, nº 5, june 2019
    • Ver ítem

    A Recent Trend in Individual Counting Approach Using Deep Network

    Autor: 
    Ghazvini, Anahita
    ;
    Abdullah, Siti Norul Huda Sheikh
    ;
    Ayob, Masri
    Fecha: 
    06/2019
    Palabra clave: 
    video surveillance; deep learning; convolutional neural network (CNN); individuals analysis; counting individuals; IJIMAI
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12530
    DOI: 
    http://doi.org/10.9781/ijimai.2019.04.003
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2719
    Open Access
    Resumen:
    In video surveillance scheme, counting individuals is regarded as a crucial task. Of all the individual counting techniques in existence, the regression technique can offer enhanced performance under overcrowded area. However, this technique is unable to specify the details of counting individual such that it fails in locating the individual. On contrary, the density map approach is very effective to overcome the counting problems in various situations such as heavy overlapping and low resolution. Nevertheless, this approach may break down in cases when only the heads of individuals appear in video scenes, and it is also restricted to the feature’s types. The popular technique to obtain the pertinent information automatically is Convolutional Neural Network (CNN). However, the CNN based counting scheme is unable to sufficiently tackle three difficulties, namely, distributions of non-uniform density, changes of scale and variation of drastic scale. In this study, we cater a review on current counting techniques which are in correlation with deep net in different applications of crowded scene. The goal of this work is to specify the effectiveness of CNN applied on popular individuals counting approaches for attaining higher precision results.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_5_5_1_pdf_11035.pdf
    Tamaño: 268.4Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 5, nº 5, june 2019

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    20
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    8

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja