• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2019
    • vol. 5, nº 4, march 2019
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2019
    • vol. 5, nº 4, march 2019
    • Ver ítem

    Day-Ahead Price Forecasting for the Spanish Electricity Market

    Autor: 
    Díaz, Julia
    ;
    Romero, Álvaro
    ;
    Dorronsoro, José Ramón
    Fecha: 
    03/2019
    Palabra clave: 
    machine learning; big data; random forest; electric market; predictive analysis; prices; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12475
    DOI: 
    http://doi.org/10.9781/ijimai.2018.04.008
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2673
    Open Access
    Resumen:
    During the last years, electrical systems around the world and in particular the Spanish electric sector have undergone great changes with the focus of turning them into more liberalized and competitive markets. For this reason, in many countries like Spain have appeared electric markets where producers sell and electricity retailers buy the power we consume. All agents involved in this market need predictions of generation, demand and especially prices to be able to participate in them in a more efficient way, obtaining a greater profit. The present work is focused on the context of development of a tool that allows to predict the price of electricity for the next day in the most precise way possible. For such target, this document analyzes the electric market to understand how prices are calculated and who are the agents that can make prices vary. Traditional proposals in the literature range from the use of Game Theory to the use of Machine Learning, Time Series Analysis or Simulation Models. In this work we analyze a normalization of the target variable due to a strong seasonal component in an hourly and daily way to later benchmark several models of Machine Learning: Ridge Regression, K-Nearest Neighbors, Support Vector Machines, Neural Networks and Random Forest. After observing that the best model is Random Forest, a discussion has been carried out on the appropriateness of the normalization for this algorithm. From this analysis it is obtained that the model that gives the best results has been Random Forest without applying the normalization function. This is due to the loss of the close relationship between the objective variable and the electric demand, obtaining an Average Absolute Error of 3.92€ for the whole period of 2016.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_5_4_5_pdf_14997.pdf
    Tamaño: 720.1Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 5, nº 4, march 2019

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    42
    64
    115
    152
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    36
    39
    53
    82

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Occupational injuries in workers of a Spanish bank 

      Reinoso-Barbero, Luis; Pardillos, L.; Romero-Paredes, M-C.; Díaz-Garrido, Ramón; Mendiguren-Santiago, José María; Gieco, A.; Gómez-Gallego, Felix (Occupational Medicine, 2023)
      BACKGROUND: In 2017, 69 108 work-related traffic injuries with medical leave were documented, constituting 12% of all occupational injuries (OI) in Spain. AIMS: The aim of this study was to describe OI within a Spanish ...
    • Sustancias nocivas y clima motivacional en relación a la práctica de actividad física 

      Castro-Sánchez, Manuel; Zurita, Félix; Chacón, Ramón; Martínez Martínez, Asunción ; Espejo, Tamara; Álvaro-González, Jose I (Salud y Drogas, 2015)
      La adolescencia es un periodo crítico en cuanto a la adquisición de hábitos saludables en detrimento de las conductas dañinas, por ello el presente estudio tiene como objetivo analizar el clima motivacional hacía la actividad ...
    • Competition seriousness and competition level modulate testosterone and cortisol responses in soccer players 

      Jiménez, Manuel ; Alvero-Cruz, José Ramón; Solla, Juan; García-Bastida, Jorge ; García-Coll, Virginia ; Rivilla, Iván ; Ruiz, Enrique ; García-Romero, Jeronimo C.; Carnero, Elvis A. (International Journal of Environmental Research and Public Health, 01/2020)
      This study aimed to analyze the modulating effect of competition seriousness and competition level in the testosterone and cortisol responses in professional soccer player. Ninety five (95) soccer players were included in ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja