• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2019
    • vol. 5, nº 4, march 2019
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2019
    • vol. 5, nº 4, march 2019
    • Ver ítem

    Biomedical Term Extraction: NLP Techniques in Computational Medicine

    Autor: 
    Redondo, Teófilo
    ;
    Díaz, Julia
    ;
    Moreno Sandoval, Antonio
    ;
    Campillos Llanos, Leonardo
    Fecha: 
    03/2019
    Palabra clave: 
    natural language processing; biomedical terminology; term recognition; information extraction; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12440
    DOI: 
    http://doi.org/10.9781/ijimai.2018.04.001
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2666
    Open Access
    Resumen:
    Artificial Intelligence (AI) and its branch Natural Language Processing (NLP) in particular are main contributors to recent advances in classifying documentation and extracting information from assorted fields, Medicine being one that has gathered a lot of attention due to the amount of information generated in public professional journals and other means of communication within the medical profession. The typical information extraction task from technical texts is performed via an automatic term recognition extractor. Automatic Term Recognition (ATR) from technical texts is applied for the identification of key concepts for information retrieval and, secondarily, for machine translation. Term recognition depends on the subject domain and the lexical patterns of a given language, in our case, Spanish, Arabic and Japanese. In this article, we present the methods and techniques for creating a biomedical corpus of validated terms, with several tools for optimal exploitation of the information therewith contained in said corpus. This paper also shows how these techniques and tools have been used in a prototype.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_5_4_6_pdf_46381.pdf
    Tamaño: 503.1Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 5, nº 4, march 2019

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    45
    46
    106
    126
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    41
    42
    35
    81

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Text Analytics: the convergence of Big Data and Artificial Intelligence 

      Moreno, Antonio; Redondo, Teófilo (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2016)
      The analysis of the text content in emails, blogs, tweets, forums and other forms of textual communication constitutes what we call text analytics. Text analytics is applicable to most industries: it can help analyze ...
    • Graph-based Techniques for Topic Classification of Tweets in Spanish 

      Cordobés, Héctor; Fernández Anta, Antonio; Chiroque, Luis F.; Pérez, Fernando; Redondo, Teófilo; Santos, Agustín (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2014)
      Topic classification of texts is one of the most interesting challenges in Natural Language Processing (NLP). Topic classifiers commonly use a bag-of-words approach, in which the classifier uses (and is trained with) ...
    • Comparison of Metabolic Syndrome, Autoimmune and Viral Distinctive Inflammatory Related Conditions as Affected by Body Mass Index 

      Chero-Sandoval, Lourdes; Martínez-Urbistondo, María; Cuevas-Sierra, Amanda; Higuera-Gómez, Andrea; Martin-Domenech, Eva; Castejón, Raquel; Mellor-Pita, Susana; Moreno-Torres, Víctor; Ramos-López, Omar; de Luis, Daniel; Vargas, Juan Antonio; Martínez, J. Alfredo (Journal of Clinical Medicine, 2024)
      Background: Metabolic inflammation (MI), long COVID (LC) and systemic lupus erythematosus (SLE) share some metabolic common manifestations and inflammatory pathophysiological similarities. Health-related quality of life ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja