• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2018
    • vol. 5, nº 1, june 2018
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2018
    • vol. 5, nº 1, june 2018
    • Ver ítem

    Spectral Restoration Based Speech Enhancement for Robust Speaker Identification

    Autor: 
    Saleem, Nasir
    ;
    Tareen, Tayyaba Gul
    Fecha: 
    06/2018
    Palabra clave: 
    a priori SNR; spectral restoration; speech enhancement; speaker identification; mel frequency cepstral coefficients; vector quantization; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12359
    DOI: 
    http://doi.org/ 10.9781/ijimai.2018.01.002
    Dirección web: 
    https://ijimai.org/journal/bibcite/reference/2648
    Open Access
    Resumen:
    Spectral restoration based speech enhancement algorithms are used to enhance quality of noise masked speech for robust speaker identification. In presence of background noise, the performance of speaker identification systems can be severely deteriorated. The present study employed and evaluated the Minimum Mean-Square-Error Short-Time Spectral Amplitude Estimators with modified a priori SNR estimate prior to speaker identification to improve performance of the speaker identification systems in presence of background noise. For speaker identification, Mel Frequency Cepstral coefficient and Vector Quantization is used to extract the speech features and to model the extracted features respectively. The experimental results showed significant improvement in speaker identification rates when spectral restoration based speech enhancement algorithms are used as a pre-processing step. The identification rates are found to be higher after employing the speech enhancement algorithms.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_5_1_4_pdf_16417.pdf
    Tamaño: 1.866Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 5, nº 1, june 2018

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    32
    29
    90
    49
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    34
    14
    14
    15

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • E2E-V2SResNet: Deep residual convolutional neural networks for end-to-end video driven speech synthesis 

      Saleem, Nasir; Gao, Jiechao; Irfan, Muhammad; Verdú, Elena ; Parra Puente, Javier (Image and vision computing, 2022)
      Speechreading which infers spoken message from a visually detected articulated facial trend is a challenging task. In this paper, we propose an end-to-end ResNet (E2E-ResNet) model for synthesizing speech signals from the ...
    • On improvement of speech intelligibility and quality: a survey of unsupervised single channel speech enhancement algorithms 

      Saleem, Nasir; Khattak, Muhammad Irfan; Verdú, Elena (International Journal of Interactive Multimedia and Artificial Intelligence, 06/2020)
      Many forms of human communication exist; for instance, text and nonverbal based. Speech is, however, the most powerful and dexterous form for the humans. Speech signals enable humans to communicate and this usefulness of ...
    • Deep Neural Networks for Speech Enhancement in Complex-Noisy Environments 

      Saleem, Nasir; Khattak, Muhammad Irfan (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2020)
      In this paper, we considered the problem of the speech enhancement similar to the real-world environments where several complex noise sources simultaneously degrade the quality and intelligibility of a target speech. The ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja