• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2017
    • vol. 4, nº 6, december 2017
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2017
    • vol. 4, nº 6, december 2017
    • Ver ítem

    Workforce Optimization for Bank Operation Centers: A Machine Learning Approach

    Autor: 
    Serengil, Sefik Ilkin
    ;
    Ozpinar, Alper
    Fecha: 
    12/2017
    Palabra clave: 
    artificial neural networks; machine learning; predictive modelling; forecasting; time series analysis; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/11833
    DOI: 
    http://doi.org/10.9781/ijimai.2017.07.002
    Dirección web: 
    https://ijimai.org/journal/bibcite/reference/2631
    Open Access
    Resumen:
    Online Banking Systems evolved and improved in recent years with the use of mobile and online technologies, performing money transfer transactions on these channels can be done without delay and human interaction, however commercial customers still tend to transfer money on bank branches due to several concerns. Bank Operation Centers serve to reduce the operational workload of branches. Centralized management also offers personalized service by appointed expert employees in these centers. Inherently, workload volume of money transfer transactions changes dramatically in hours. Therefore, work-force should be planned instantly or early to save labor force and increase operational efficiency. This paper introduces a hybrid multi stage approach for workforce planning in bank operation centers by the application of supervised and unsu-pervised learning algorithms. Expected workload would be predicted as supervised learning whereas employees are clus-tered into different skill groups as unsupervised learning to match transactions and proper employees. Finally, workforce optimization is analyzed for proposed approach on production data.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai20174_6_11_pdf_19584.pdf
    Tamaño: 796.5Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 4, nº 6, december 2017

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    13
    200
    201
    219
    198
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    4
    161
    144
    165
    121

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja