• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2017
    • vol. 4, nº 6, december 2017
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2017
    • vol. 4, nº 6, december 2017
    • Ver ítem

    A Topic Modeling Guided Approach for Semantic Knowledge Discovery in e-Commerce

    Autor: 
    Anoop, V S
    ;
    Asharaf, S
    Fecha: 
    12/2017
    Palabra clave: 
    web mining; e-commerce; graphs; semantic web; text mining; latent dirichlet allocation; IJIMAI
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/11824
    DOI: 
    http://doi.org/10.9781/ijimai.2017.03.014
    Dirección web: 
    https://ijimai.org/journal/bibcite/reference/2626
    Open Access
    Resumen:
    The task of mining large unstructured text archives, extracting useful patterns and then organizing them into a knowledgebase has attained a great attention due to its vast array of immediate applications in business. Businesses thus demand new and efficient algorithms for leveraging potentially useful patterns from heterogeneous data sources that produce huge volumes of unstructured data. Due to the ability to bring out hidden themes from large text repositories, topic modeling algorithms attained significant attention in the recent past. This paper proposes an efficient and scalable method which is guided by topic modeling for extracting concepts and relationships from e-commerce product descriptions and organizing them into knowledgebase. Semantic graphs can be generated from such a knowledgebase on which meaning aware product discovery experience can be built for potential buyers. Extensive experiments using proposed unsupervised algorithms with e-commerce product descriptions collected from open web shows that our proposed method outperforms some of the existing methods of leveraging concepts and relationships so that efficient knowledgebase construction is possible.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai20174_6_6_pdf_86078.pdf
    Tamaño: 835.3Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 4, nº 6, december 2017

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    14
    36
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    6
    20

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja