• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2017
    • vol. 4, nº 5, september 2017
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2017
    • vol. 4, nº 5, september 2017
    • Ver ítem

    Diagnosis of Malignant Melanoma of Skin Cancer Types

    Autor: 
    Alasadi, Abbas Hassin
    ;
    Alsafy, Baidaa
    Fecha: 
    09/2017
    Palabra clave: 
    segmentation; cancer; feature extraction; medicine; diagnosis; melanoma; IJIMAI
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/11788
    DOI: 
    http://doi.org/10.9781/ijimai.2017.458
    Dirección web: 
    https://ijimai.org/journal/bibcite/reference/2595
    Open Access
    Resumen:
    Malignant melanoma is a kind of skin cancer that begins in melanocytes. It can influence on the skin only, or it may expand to the bones and organs. It is less common, but more serious and aggressive than other types of skin cancer. Malignant Melanoma can happen anywhere on the skin, but it is widespread in certain locations such as the legs in women, the back and chest in men, the face, the neck, mouth, eyes, and genitals. In this paper, a proposed algorithm is designed for diagnosing malignant melanoma types by using digital image processing techniques. The algorithm consists of four steps: preprocessing, separation, features extraction, and diagnosis. A neural network (NN) used to diagnosis malignant melanoma types. The total accuracy of the neural network was 100% for training and 93% for testing. The evaluation of the algorithm is done by using sensitivity, specificity, and accuracy. The sensitivity of NN in diagnosing malignant melanoma types was 95.6%, while the specificity was 92.2% and the accuracy was 93.9%. The experimental results are acceptable.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai20174_5_8_pdf_89993.pdf
    Tamaño: 1010.Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 4, nº 5, september 2017

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    19
    27
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    8
    18

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja