Mostrar el registro sencillo del ítem

dc.contributor.authorBacallao-Vidal, Jesús Concepción
dc.contributor.authorMachado-Fernández, José Raúl
dc.date2016-12
dc.date.accessioned2021-07-15T10:03:45Z
dc.date.available2021-07-15T10:03:45Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/11620
dc.description.abstractThe main problem faced by naval radars is the elimination of the clutter input which is a distortion signal appearing mixed with target reflections. Recently, the Pareto distribution has been related to sea clutter measurements suggesting that it may provide a better fit than other traditional distributions. The authors propose a new method for estimating the Pareto shape parameter based on artificial neural networks. The solution achieves a precise estimation of the parameter, having a low computational cost, and outperforming the classic method which uses Maximum Likelihood Estimates (MLE). The presented scheme contributes to the development of the NATE detector for Pareto clutter, which uses the knowledge of clutter statistics for improving the stability of the detection, among other applications.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 4, nº 2
dc.relation.urihttps://ijimai.org/journal/bibcite/reference/2574es_ES
dc.rightsopenAccesses_ES
dc.subjectartificial neural networkses_ES
dc.subjectestimationes_ES
dc.subjectpareto distributed clutteres_ES
dc.subjectIJIMAIes_ES
dc.titleImproved Shape Parameter Estimation in Pareto Distributed Clutter with Neural Networkses_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttp://doi.org/10.9781/ijimai.2016.421


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem