• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2016
    • vol. 3, nº 7, june 2016
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2016
    • vol. 3, nº 7, june 2016
    • Ver ítem

    SVM and ANN Based Classification of Plant Diseases Using Feature Reduction Technique

    Autor: 
    D. Pujari, Jagadeesh
    ;
    Yakkundimath, Rajesh
    ;
    Syedhusain Byadgi, Abdulmunaf
    Fecha: 
    2016
    Palabra clave: 
    plant disease; image processing; feature selection; classifiers; experimentation; IJIMAI
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/11219
    DOI: 
    http://doi.org/10.9781/ijimai.2016.371
    Dirección web: 
    https://ijimai.org/journal/bibcite/reference/2541
    Open Access
    Resumen:
    Computers have been used for mechanization and automation in different applications of agriculture/horticulture. The critical decision on the agricultural yield and plant protection is done with the development of expert system (decision support system) using computer vision techniques. One of the areas considered in the present work is the processing of images of plant diseases affecting agriculture/horticulture crops. The first symptoms of plant disease have to be correctly detected, identified, and quantified in the initial stages. The color and texture features have been used in order to work with the sample images of plant diseases. Algorithms for extraction of color and texture features have been developed, which are in turn used to train support vector machine (SVM) and artificial neural network (ANN) classifiers. The study has presented a reduced feature set based approach for recognition and classification of images of plant diseases. The results reveal that SVM classifier is more suitable for identification and classification of plant diseases affecting agriculture/horticulture crops.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai20163_7_1_pdf_75740.pdf
    Tamaño: 1.427Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 3, nº 7, june 2016

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    18
    8
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    11
    10

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja