• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2015
    • vol. 3, nº 4, september 2015
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2015
    • vol. 3, nº 4, september 2015
    • Ver ítem

    Local Convergence for an Improved Jarratt-type Method in Banach Space

    Autor: 
    Argyros, Ioannis K
    ;
    González, Daniel
    Fecha: 
    2015
    Palabra clave: 
    Jarratt-type methods; Newton’s method; banach space; local convergence; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/10161
    DOI: 
    https://doi.org/10.9781/ijimai.2015.343
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2503
    Open Access
    Resumen:
    We present a local convergence analysis for an improved Jarratt-type methods of order at least five to approximate a solution of a nonlinear equation in a Banach space setting. The convergence ball and error estimates are given using hypotheses up to the first Fréchet derivative in contrast to earlier studies using hypotheses up to the third Fréchet derivative. Numerical examples are also provided in this study, where the older hypotheses are not satisfied to solve equations but the new hypotheses are satisfied.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai20153_4_4_pdf_25787.pdf
    Tamaño: 2.944Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 3, nº 4, september 2015

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    68
    73
    42
    40
    84
    204
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    56
    81
    36
    31
    43
    53

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Local convergence comparison between frozen Kurchatov and Schmidt–Schwetlick–Kurchatov solvers with applications 

      Moysi, Alejandro; Argyros, Michael I; Argyros, Ioannis K; Magreñán, Á. Alberto ; Sarría, Íñigo ; González Sánchez, Daniel (Journal of Computational and Applied Mathematics, 04/2022)
      In this work we are going to use the Kurchatov–Schmidt–Schwetlick-like solver (KSSLS) and the Kurchatov-like solver (KLS) to locate a zero, denoted by x∗ of operator F. We define F as F:D⊆B1⟶B2 where B1 and B2 stand for ...
    • Ball comparison between frozen Potra and Schmidt-Schwetlick schemes with dynamical analysis 

      Argyros, Michael I; Argyros, Ioannis K; González, Daniel; Magreñán, Á. Alberto; Moysi, Alejandro; Sarría, Íñigo (Computational and Mathematical Methods, 2021)
      In this article, we propose a new research related to the convergence of the frozen Potra and Schmidt-Schwetlick schemes when we apply to equations. The purpose of this study is to introduce a comparison between two solutions ...
    • New Improvement of the Domain of Parameters for Newton’s Method 

      Amorós, Cristina ; Argyros, Ioannis K; González, Daniel; Magreñán, Á. Alberto; Regmi, Samundra; Sarría, Íñigo (Mathematics, 01/2020)
      There is a need to extend the convergence domain of iterative methods for computing a locally unique solution of Banach space valued operator equations. This is because the domain is small in general, limiting the applicability ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja