Mostrar el registro sencillo del ítem

dc.contributor.authorGutiérrez, Celia
dc.date2014-06
dc.date.accessioned2020-02-05T09:53:40Z
dc.date.available2020-02-05T09:53:40Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/9795
dc.description.abstractThe flexible Job-shop Scheduling Problem (fJSP) considers the execution of jobs by a set of candidate resources while satisfying time and technological constraints. This work, that follows the hierarchical architecture, is based on an algorithm where each objective (resource allocation, start-time assignment) is solved by a genetic algorithm (GA) that optimizes a particular fitness function, and enhances the results by the execution of a set of heuristics that evaluate and repair each scheduling constraint on each operation. The aim of this work is to analyze the impact of some algorithmic features of the overlap constraint heuristics, in order to achieve the objectives at a highest degree. To demonstrate the efficiency of this approach, experimentation has been performed and compared with similar cases, tuning the GA parameters correctly.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 02, nº 06
dc.relation.urihttps://www.ijimai.org/journal/node/611es_ES
dc.rightsopenAccesses_ES
dc.subjectalgorithmes_ES
dc.subjectflexible job-shop schedulinges_ES
dc.subjectGA parameterses_ES
dc.subjectlocal improvementes_ES
dc.subjectoverlap heuristicses_ES
dc.subjectIJIMAIes_ES
dc.titleOverlap Algorithms in Flexible Job-shop Schedulinges_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttp://dx.doi.org/10.9781/ijimai.2014.265


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem