Mostrar el registro sencillo del ítem

dc.contributor.authorQiu, Shi
dc.contributor.authorCheng, Keyang
dc.contributor.authorZhou, Tao
dc.contributor.authorTahir, Rabia
dc.contributor.authorTing, Liang
dc.date2022-09
dc.date.accessioned2022-10-19T13:13:42Z
dc.date.available2022-10-19T13:13:42Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/13674
dc.description.abstractEpilepsy is one kind of brain diseases, and its sudden unpredictability is the main cause of disability and even death. Thus, it is of great significance to identify electroencephalogram (EEG) during the seizure quickly and accurately. With the rise of cloud computing and edge computing, the interface between local detection and cloud recognition is established, which promotes the development of portable EEG detection and diagnosis. Thus, we construct a framework for identifying EEG signals in epileptic seizure based on cloud-edge computing. The EEG signals are obtained in real time locally, and the horizontal viewable model is established at the edge to enhance the internal correlation of the signals. The Takagi-Sugeno-Kang (TSK) fuzzy system is established to analyze the epileptic signals. In the cloud, the fusion of clinical features and signal features is established to establish a deep learning framework. Through local signal acquisition, edge signal processing and cloud signal recognition, the diagnosis of epilepsy is realized, which can provide a new idea for the real-time diagnosis and feedback of EEG during epileptic seizure.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.urihttps://ijimai.org/journal/bibcite/reference/3135es_ES
dc.rightsopenAccesses_ES
dc.subjectclinical featurees_ES
dc.subjectcloud computinges_ES
dc.subjectdeep learninges_ES
dc.subjectedge computinges_ES
dc.subjectelectroencephalographyes_ES
dc.subjectepilepsyes_ES
dc.subjectfuzzyes_ES
dc.subjectTakagi-Sugeno-Kang (TSK)es_ES
dc.subjectIJIMAIes_ES
dc.titleAn EEG Signal Recognition Algorithm During Epileptic Seizure Based on Distributed Edge Computinges_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttps://doi.org/10.9781/ijimai.2022.07.001


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem