Mostrar el registro sencillo del ítem

dc.contributor.authorGoli, Alireza
dc.contributor.authorZare, Hassan Khademi
dc.contributor.authorTavakkoli-Moghaddam, Reza
dc.contributor.authorSadeghieh, Ahmad
dc.date2019-09
dc.date.accessioned2022-03-15T08:55:38Z
dc.date.available2022-03-15T08:55:38Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/12628
dc.description.abstractThis paper provides an integrated framework based on statistical tests, time series neural network and improved multi-layer perceptron neural network (MLP) with novel meta-heuristic algorithms in order to obtain best prediction of dairy product demand (DPD) in Iran. At first, a series of economic and social indicators that seemed to be effective in the demand for dairy products is identified. Then, the ineffective indices are eliminated by using Pearson correlation coefficient, and statistically significant variables are determined. Then, MLP is improved with the help of novel meta-heuristic algorithms such as gray wolf optimization and cultural algorithm. The designed hybrid method is used to predict the DPD in Iran by using data from 2013 to 2017. The results show that the MLP offers 71.9% of the coefficient of determination, which is better compared to the other two methods if no improvement is achieved.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 5, nº 6
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/2711es_ES
dc.rightsopenAccesses_ES
dc.subjectartificial intelligencees_ES
dc.subjectneural networkes_ES
dc.subjectgray wolf optimizationes_ES
dc.subjectcultural algorithmes_ES
dc.subjectregressiones_ES
dc.subjecttime serieses_ES
dc.subjectIJIMAIes_ES
dc.titleAn Improved Artificial Intelligence Based on Gray Wolf Optimization and Cultural Algorithm to Predict Demand for Dairy Products: A Case Studyes_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttp://doi.org/10.9781/ijimai.2019.03.003


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem