Mostrar el registro sencillo del ítem

dc.contributor.authorWaheeb, Waddah
dc.contributor.authorGhazali, Rozaida
dc.date2019-06
dc.date.accessioned2022-02-28T11:51:12Z
dc.date.available2022-02-28T11:51:12Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/12531
dc.description.abstractIn this paper, a new application of ridge polynomial based neural network models in multivariate time series forecasting is presented. The existing ridge polynomial based neural network models can be grouped into two groups. Group A consists of models that use only autoregressive inputs, whereas Group B consists of models that use autoregressive and moving-average (i.e., error feedback) inputs. The well-known Box-Jenkins gas furnace multivariate time series was used in the forecasting comparison between the two groups. Simulation results show that the models in Group B achieve significant forecasting performance as compared to the models in Group A. Therefore, the Box-Jenkins gas furnace data can be modeled better using neural networks when error feedback is used.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 5, nº 5
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/2720es_ES
dc.rightsopenAccesses_ES
dc.subjecttime serieses_ES
dc.subjecterror feedbackes_ES
dc.subjectnonlinear autoregressive moving-average modeles_ES
dc.subjectrecurrent networkes_ES
dc.subjectIJIMAIes_ES
dc.titleForecasting the Behavior of Gas Furnace Multivariate Time Series Using Ridge Polynomial Based Neural Network Modelses_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttp://doi.org/10.9781/ijimai.2019.04.004


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem