Mostrar el registro sencillo del ítem

dc.contributor.authorZouggar, Taleb
dc.contributor.authorAdla, A
dc.date2019-06
dc.date.accessioned2022-02-24T09:54:33Z
dc.date.available2022-02-24T09:54:33Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/12502
dc.description.abstractSeveral selection methods in the literature are essentially based on an evaluation function that determines whether a model M contributes positively to boost the performances of the whole ensemble. In this paper, we propose a method called DIversity and ACcuracy for Ensemble Selection (DIACES) using an evaluation function based on both diversity and accuracy. The method is applied on homogenous ensembles composed of C4.5 decision trees and based on a hill climbing strategy. This allows selecting ensembles with the best compromise between maximum diversity and minimum error rate. Comparative studies show that in most cases the proposed method generates reduced size ensembles with better performances than usual ensemble simplification methods.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 5, nº 5
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/2680es_ES
dc.rightsopenAccesses_ES
dc.subjectclassificationes_ES
dc.subjectmachine learninges_ES
dc.subjectdecision treeses_ES
dc.subjectensemble methodses_ES
dc.subjectbagginges_ES
dc.subjectensemble pruninges_ES
dc.subjecthill climbinges_ES
dc.subjectIJIMAIes_ES
dc.titleA Diversity-Accuracy Measure for Homogenous Ensemble Selectiones_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttp://doi.org/10.9781/ijimai.2018.06.005


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem