Mostrar el registro sencillo del ítem

dc.contributor.authorPourvali, Mohsen
dc.contributor.authorOrlando, Salvatore
dc.contributor.authorOmidvarborna, Hosna
dc.date2019-03
dc.date.accessioned2022-02-21T10:58:19Z
dc.date.available2022-02-21T10:58:19Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/12479
dc.description.abstractTopic modeling algorithms are statistical methods that aim to discover the topics running through the text documents. Using topic models in machine learning and text mining is popular due to its applicability in inferring the latent topic structure of a corpus. In this paper, we represent an enriching document approach, using state-of-the-art topic models and data fusion methods, to enrich documents of a collection with the aim of improving the quality of text clustering and cluster labeling. We propose a bi-vector space model in which every document of the corpus is represented by two vectors: one is generated based on the fusion-based topic modeling approach, and one simply is the traditional vector model. Our experiments on various datasets show that using a combination of topic modeling and fusion methods to create documents’ vectors can significantly improve the quality of the results in clustering the documents.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 5, nº 4
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/2704es_ES
dc.rightsopenAccesses_ES
dc.subjecttext mininges_ES
dc.subjectdocument enrichinges_ES
dc.subjectdocument clusteringes_ES
dc.subjectcluster labelinges_ES
dc.subjectIJIMAIes_ES
dc.titleTopic Models and Fusion Methods: a Union to Improve Text Clustering and Cluster Labelinges_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttp://doi.org/10.9781/ijimai.2018.12.007


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem