Mostrar el registro sencillo del ítem

dc.contributor.authorCantón Croda, Rosa María
dc.contributor.authorGibaja Romero, Damián Emilio
dc.contributor.authorCaballero Morales, Santiago Omar
dc.date2019-03
dc.date.accessioned2022-02-14T12:04:11Z
dc.date.available2022-02-14T12:04:11Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/12441
dc.description.abstractSales forecasting allows firms to plan their production outputs, which contributes to optimizing firms' inventory management via a cost reduction. However, not all firms have the same capacity to store all the necessary information through time. So, time-series with a short length are common within industries, and problems arise due to small time series does not fully capture sales' behavior. In this paper, we show the applicability of neural networks in a case where a company reports a short time-series given the changes in its warehouse structure. Given the neural networks independence form statistical assumptions, we use a multilayer-perceptron to get the sales forecasting of this enterprise. We find that learning rates variations do not significantly increase the computing time, and the validation fails with an error minor to five percent.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 5, nº 4
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/2668es_ES
dc.rightsopenAccesses_ES
dc.subjectartificial intelligencees_ES
dc.subjectartificial neural networkses_ES
dc.subjectforecastinges_ES
dc.subjectIJIMAIes_ES
dc.titleSales Prediction through Neural Networks for a Small Datasetes_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttp://doi.org/10.9781/ijimai.2018.04.003


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem