Mostrar el registro sencillo del ítem

dc.contributor.authorNaz, Saima
dc.contributor.authorZiauddin, Sheikh
dc.contributor.authorShahid, Ahmad
dc.date2019-03
dc.date.accessioned2022-02-14T08:24:18Z
dc.date.available2022-02-14T08:24:18Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/12432
dc.description.abstractDriver fatigue is one of the major causes of accidents. This has increased the need for driver fatigue detection mechanism in the vehicles to reduce human and vehicle loss during accidents. In the proposed scheme, we capture videos from a camera mounted inside the vehicle. From the captured video, we localize the eyes using Viola-Jones algorithm. Once the eyes have been localized, they are classified as open or closed using three different techniques namely mean intensity, SVM, and SIFT. If eyes are found closed for a considerable amount of time, it indicates fatigue and consequently an alarm is generated to alert the driver. Our experiments show that SIFT outperforms both mean intensity and SVM, achieving an average accuracy of 97.45% on a dataset of five videos, each having a length of two minutes.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 5, nº 4
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/2639es_ES
dc.rightsopenAccesses_ES
dc.subjectdriver fatigue detectiones_ES
dc.subjecteye detectiones_ES
dc.subjectscale invariant feature transformes_ES
dc.subjectsupport vector machinees_ES
dc.subjecttraffic accidentses_ES
dc.subjectIJIMAIes_ES
dc.titleDriver Fatigue Detection using Mean Intensity, SVM, and SIFTes_ES
dc.typearticlees_ES
reunir.tag~ARIes_ES
dc.identifier.doihttp://doi.org/10.9781/ijimai.2017.10.002


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem