Mostrar el registro sencillo del ítem

dc.contributor.authorDehkharghani, Rahim
dc.date2018-12
dc.date.accessioned2022-02-08T11:54:17Z
dc.date.available2022-02-08T11:54:17Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/12410
dc.description.abstractMany approaches to sentiment analysis benefit from polarity lexicons. Most polarity lexicons include a list of polar (positive/negative) words, and sentiment analysis systems attempt to capture the occurrence of those words in text using polarity lexicons. Although there exist some polarity lexicons in many natural languages, most languages suffer from the lack of phrase polarity lexicons. Phrases play an important role in sentiment analysis because the polarity of a phrase cannot always be estimated based on the polarity of its parts. In this work, a hybrid approach is proposed for building phrase polarity lexicons which is experimented on Turkish as a low-resource language. The obtained classification accuracies in extracting and classifying phrases as positive, negative, or neutral, approve the effectiveness of the proposed methodology.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 5, nº 3
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/2694es_ES
dc.rightsopenAccesses_ES
dc.subjectsentiment analysises_ES
dc.subjectpolarity lexiconses_ES
dc.subjectpolarity classificationes_ES
dc.subjectphraseses_ES
dc.subjectIJIMAIes_ES
dc.titleBuilding Phrase Polarity Lexicons for Sentiment Analysises_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttp://doi.org/10.9781/ijimai.2018.10.004


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem