Mostrar el registro sencillo del ítem

dc.contributor.authorTaghezout, Noria
dc.contributor.authorBenkaddour, Fatima Zohra
dc.contributor.authorKaddour-Ahmed, Fatima Zahra
dc.contributor.authorHammadi, Ilyes-Ahmed
dc.date2018-12
dc.date.accessioned2022-02-07T12:14:44Z
dc.date.available2022-02-07T12:14:44Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/12404
dc.description.abstractIn this paper, we propose a global architecture of a recommender tool, which represents a part of an existing collaborative platform. This tool provides diagnostic documents for industrial operators. The recommendation process considered here is composed of three steps: Collecting and filtering information; Prediction or recommendation step; evaluating and improvement. In this work, we focus on collecting and filtering step. We mainly use information result from collaborative sessions and documents describing solutions that are attributed to the complex diagnostic problems. The developed tool is based on collaborative filtering that operates on users' preferences and similar responses.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 5, nº 3
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/2678es_ES
dc.rightsopenAccesses_ES
dc.subjectrecommendation systemses_ES
dc.subjectDSSes_ES
dc.subjecttwitteres_ES
dc.subjectcollaborative filteringes_ES
dc.subjectindustrial diagnosises_ES
dc.subjectIJIMAIes_ES
dc.titleAn Adapted Approach for User Profiling in a Recommendation System: Application to Industrial Diagnosises_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttp://doi.org/10.9781/ijimai.2018.06.003


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem